基于可视分析的多上下文移动社交网络社区发现
A Visual Analysis Approach for Community Detection of Multi-Context Mobile Social Networks
-
摘要: 社区结构探索是社交网络分析的热门研究方向之一。基于算法的方法通常仅考虑网络拓扑结构,通常不考虑附加在实体和社交关系上的上下文环境信息,其中一个重要原因是上下文信息往往复杂多变,自动方法难以建立通用模型对所有上下文情况进行统一分析。本文提出了使用可视分析手段融合上下文信息的社区分析方法来解决这一问题。该方法包含两个主要步骤:显著性上下文的交互式探索,以及上下文引导的迭代式社区发现过程。整个分析过程的核心是上下文相关模型,这一模型从视觉上刻画了给定上下文集合对社区发现的影响,以及帮助发掘特定上下文中的社区结构。模型提取出的相关性信息用于驱动迭代式交互可视推理过程,从而逐步发现社区结构。我们还提出了一系列用于编码社区结构、上下文信息和上下文相关模型的视觉表达方案,特别是一种新的增强式平行坐标设计。这种平行坐标视图用于同时表达上下文信息和社区结构,并支持交互式数据探索和社区侦测。案例分析证明了本文方法的效率和精度。Abstract: The problem of detecting community structures of a social network has been extensively studied over recent years, but most existing methods solely rely on the network structure and neglect the context information of the social relations. The main reason is that a context-rich network offers too much flxibility and complexity for automatic or manual modulation of the multifaceted context in the analysis process. We address the challenging problem of incorporating context information into the community analysis with a novel visual analysis mechanism. Our approach consists of two stages: interactive discovery of salient context, and iterative context-guided community detection. Central to the analysis process is a context relevance model (CRM) that visually characterizes the influence of a given set of contexts on the variation of the detected communities, and discloses the community structure in specific context configurations. The extracted relevance is used to drive an iterative visual reasoning process, in which the community structures are progressively discovered. We introduce a suite of visual representations to encode the community structures, the context as well as the CRM. In particular, we propose an enhanced parallel coordinates representation to depict the context and community structures, which allows for interactive data exploration and community investigation. Case studies on several datasets demonstrate the effciency and accuracy of our approach.