We use cookies to improve your experience with our site.

关于有色点集的一些距离问题

On some proximity problems of colored sets

  • 摘要: 最大直径颜色支撑点集问题可以定义如下:给定由m种颜色着色的n个点,选取其中m个不同颜色的点使之相应的直径最大。在本文中,我们对该问题的平面版本给出运算时间为O(n log n)的最优算法。我们的方法也可以用来解决非精确点用多边形表示时的最大直径问题。我们同时对平面上的最远外部邻居问题给出最优算法,并对该问题二维及三维的查询版本给出相关算法。最后,我们研究d维空间中的最小最短点对颜色支撑点集问题,在d为常数的情况下我们的算法比原有的最好算法快log m倍。

     

    Abstract: The maximum diameter color-spanning set problem (MaxDCS) is defined as follows: given n points with m colors, select m points with m distinct colors such that the diameter of the set of chosen points is maximized. In this paper, we design an optimal O(n log n) time algorithm using rotating calipers for MaxDCS in the plane. Our algorithm can also be used to solve the maximum diameter problem of imprecise points modeled as polygons. We also give an optimal algorithm for the all farthest foreign neighbor problem (AFFN) in the plane, and propose algorithms to answer the farthest foreign neighbor query (FFNQ) of colored sets in two and three-dimensional space. Furthermore, we study the problem of computing the closest pair of color-spanning set (CPCS) in d-dimensional space, and remove the log m factor in the best known time bound if d is a constant.

     

/

返回文章
返回