-
摘要: 本文提出了一种新的基于谱分析的动画压缩方法,该方法可用来压缩一系列的空间连接关系相同的网格动画模型.本文方法直接对定义在曲面上的变形梯度进行压缩,所使用的方法是:首先将每个变形梯度分解为刚性变形(旋转变换)和非刚性变形(拉伸变换)两个部分,然后使用一种称为流形谐波变换的谱分析方法分别对以上两个部分进行压缩,舍弃其中的高频信息.通过一系列的实验结果,本文证明了,这种新的动画压缩方法可以很好地把握压缩率和重建效果之间的平衡.与此同时,本文还将这种新方法同其他一些当前较新的压缩方法进行了比较,进一步证明了该方法的可行性.Abstract: This paper presents a spectral approach to compress dynamic animation consisting of a sequence of homeo-morphic manifold meshes. Our new approach directly compresses the field of deformation gradient defined on the surface mesh, by decomposing it into rigid-body motion (rotation) and non-rigid-body deformation (stretching/shearing) through polar decomposition. It is known that the Rotation Group has the algebraic topology of 3-D ring, which is different from other operations like stretching and shearing. Thus we compress these two groups separately, by using Manifold Harmonics Transform to drop out their high-frequency details. Our experimental result shows that our method achieves a good balance between the reconstruction quality and compression ratio. We compare our results quantitatively with other existing approaches on animation compression, using standard measurement criteria.
-
-
[1] Sumner R, Popovi? J. Deformation transfer for triangle meshes. ACM Transactions on Graphics, 2004, 23(3): 399-405.
[2] Shoemake K, Duff T. Matrix animation and polar decomposition. In Proc. the Conference on Graphics Interface, May 1992, pp.258-264.
[3] Baker A. Matrix Groups: An Introduction to Lie Group Theory. Springer, 2002.
[4] Karni Z, Gotsman C. Spectral compression of mesh geometry. In Proc. the 27th Annual Conference on Computer Graphics and Interactive Techniques, July 2000, pp.279-286.
[5] Vallet B, Lévy B. Spectral geometry processing with manifold harmonics. Computer Graphics Forum, 2008, 27(2): 251-260.
[6] Karni Z, Gotsman C. Compression of soft-body animation sequences. Computers & Graphics, 2004, 28(1): 25-34.
[7] Alexa M, Müller W. Representing animations by principal components. Computer Graphics Forum, 2000, 19(3): 411-418.
[8] Váša L, Skala V. COBRA: Compression of the basis for PCA represented animations. Computer Graphics Forum, 2009, 28(6): 1529-1540.
[9] Sattler M, Sarlette R, Klein R. Simple and efficient compression of animation sequences. In Proc. the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, July 2005, pp.209-217.
[10] Tejera M, Hilton A. Compression techniques for 3D video mesh sequences. In Articulated Motion and Deformable Objects, Perales F J, Fisher R B, Moeslund T B (eds.), Springer Berlin Heidelberg, 2012, pp.12–25.
[11] Váša L, Skala V. Combined compression and simplification of dynamic 3D meshes. Computer Animation and Virtual Worlds, 2009, 20(4): 447-456.
[12] Ibarria L, Rossignac J. Dynapack: Space-time compression of the 3D animations of triangle meshes with fixed connectivity. In Proc. the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, July 2003, pp.126-135.
[13] Ahn J, Koh Y, Kim C. Efficient fine-granular scalable coding of 3D mesh sequences. IEEE Transactions on Multimedia, 2013, 15(3): 485-497.
[14] Khodakovsky A, Schröder P, Sweldens W. Progressive geometry compression. In Proc. the 27th Annual Conference on Computer Graphics and Interactive Techniques, July 2000, pp.271-278.
[15] Amjoun R, Straßer W. Single-rate near lossless compression of animated geometry. Computer-Aided Design, 2009, 41(10): 711-718.
[16] Stefanoski N, Ostermann J. SPC: Fast and efficient scalable predictive coding of animated meshes. Computer Graphics Forum, 2010, 29(1): 101-116.
[17] Váša L, Skala V. CODDYAC: Connectivity driven dynamic mesh compression. In Proc. 3DTV Conference, May 2007.
[18] Váša L, Skala V. Geometry-driven local neighbourhood based predictors for dynamic mesh compression. Computer Graphics Forum, 2010, 29(6): 1921-1933.
[19] Lee D, Sull S, Kim C. Progressive 3D mesh compression using MOG-based Bayesian entropy coding and gradual prediction. The Visual Computer, 2014, 30(10): 1077-1091.
[20] Zhang J, Zheng C, Hu X. Triangle mesh compression along the Hamiltonian cycle. The Visual Computer, 2013, 29(6/7/8): 717-727.
[21] James D, Twigg C. Skinning mesh animations. ACM Transactions on Graphics, 2005, 24(3): 399-407.
[22] Mamou K, Zaharia T, Prêteux F. A skinning approach for dynamic 3D mesh compression. Computer Animation and Virtual Worlds, 2006, 17(3/4): 337-346.
[23] Mamou K, Zaharia T, Prêteux F. FAMC: The MPEG-4 standard for animated mesh compression. In Proc. the 15th IEEE International Conference on Image Processing, October 2008, pp.2676-2679.
[24] Le B, Deng Z. Smooth skinning decomposition with rigid bones. ACM Transactions on Graphics, 2012, 31(6): Article No. 199.
[25] Kavan L, Sloan P, O'Sullivan C. Fast and efficient skinning of animated meshes. Computer Graphics Forum, 2010, 29(2): 327-336.
[26] Váša L, Skala V. A perception correlated comparison method for dynamic meshes. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(2): 220-230.
[27] Váša L, Pet?Ík O. Optimising perceived distortion in lossy encoding of dynamic meshes. Computer Graphics Forum, 2011, 30(5): 1439-1449.
[28] Zhang H, Kaick O, Dyer R. Spectral methods for mesh processing and analysis. In Proc. EUROGRAPHICS, Sept. 2007.
[29] Taubin G. A signal processing approach to fair surface design. In Proc. the 22nd Annual Conference on Computer Graphics and Interactive Techniques, September 1995, pp.351-358.
[30] Liu R, Zhang H. Mesh segmentation via spectral embedding and contour analysis. Computer Graphics Forum, 2007, 26(3): 385-394.
[31] Cotting D, Weyrich T, Pauly M, Markus G. Robust watermarking of point-sampled geometry. In Proc. Shape Modeling International, June 2004, pp.233-242.
[32] Dong S, Bremer P, Garland M, Pascucci V, Hart J. Spectral surface quadrangulation. ACM Transactions on Graphics, 2006, 25(3): 1057-1066.
[33] Reuter M, Wolter F, Peinecke N. Laplace-Beltrami spectra as “Shape-DNA” of surfaces and solids. Computer-Aided Design, 2006, 38(4): 342-366.
[34] Liu Y, Prabhakaran B, Guo X. Point-based manifold harmonics. IEEE Transaction on Visualization and Computer Graphics, 2012, 18(10): 1693-1703.
[35] Belkin M, Niyogi P. Towards a theoretical foundation for Laplacian-based manifold methods. In Learning Theory, Auer P, Meir R (eds.), Springer Berlin Heidelberg, 2005, pp.486-500.
[36] Belkin M, Sun J, Wang Y. Constructing Laplace operator from point clouds in Rd. In Proc. the 20th Annual ACMSIAM Symposium on Discrete Algorithms, January 2009, pp.1031-1040.
[37] Tapp K. Matrix Groups for Undergraduates. American Mathematical Society, 2005.
计量
- 文章访问数: 21
- HTML全文浏览量: 1
- PDF下载量: 1192