We use cookies to improve your experience with our site.

一种基于混合参数的深度相机与彩色相机线性标定方法

A Linear Approach for Depth and Colour Camera Calibration Using Hybrid Parameters

  • 摘要: 近年来, 计算机图形学和人机交互中的许多应用都采用彩色摄像机和深度摄像机作为输入设备。因此, 需要对这两种分别采用彩色和深度作为输入的硬件进行有效标定。为了消除传统标定方法中需要使用非线性优化求解相机内参以及彩色和深度摄像机间转换所带来的数值计算困难, 本文提出了一种基于混合参数矩阵的标定方法线性化优化过程。该混合参数将深度相机内参和深度、彩色摄像机之间旋转变换进行组合, 提供了从深度参数空间(深度摄像机图像)到颜色参数空间(彩色摄像机图像)的变换。通过对混合参数矩阵进行标准QR分解可以进一步得到旋转变换和深度相机内参。我们在合成的测试数据和使用微软Kinect捕获的真实的深度数据上分别测试我们的算法。实验表明, 由于使用混合参数带来的优势, 我们的方法使用更少的计算时间(Herrera方法的1/50和Raposo方法的1/10)达到了与目前最先进的标定算法相当的标定精度。

     

    Abstract: Many recent applications of computer graphics and human computer interaction have adopted both colour cameras and depth cameras as input devices. Therefore, an effective calibration of both types of hardware taking different colour and depth inputs is required. Our approach removes the numerical difficulties of using non-linear optimization in previous methods which explicitly resolve camera intrinsics as well as the transformation between depth and colour cameras. A matrix of hybrid parameters is introduced to linearize our optimization. The hybrid parameters offer a transformation from a depth parametric space (depth camera image) to a colour parametric space (colour camera image) by combining the intrinsic parameters of depth camera and a rotation transformation from depth camera to colour camera. Both the rotation transformation and intrinsic parameters can be explicitly calculated from our hybrid parameters with the help of a standard QR factorisation. We test our algorithm with both synthesized data and real-world data where ground-truth depth information is captured by Microsoft Kinect. The experiments show that our approach can provide comparable accuracy of calibration with the state-of-the-art algorithms while taking much less computation time (1/50 of Herrera's method and 1/10 of Raposo's method) due to the advantage of using hybrid parameters.

     

/

返回文章
返回