We use cookies to improve your experience with our site.

在神经机器翻译中优化不可分解的评价指标

Optimizing Non-Decomposable Evaluation Metrics for Neural Machine Translation

  • 摘要: 尽管针对评价指标来优化模型参数被验证是对端到端的神经机器翻译有利的,但由于在训练中需要使用在线学习算法,因此研究者们使用的评价指标往往被限制为句子级别。而这并不是研究者们的初衷,因为在测试阶段最终的评价指标一般是不可分解的(即,语料库级别的评价指标不可以由句子级别的值加和得到)。为了减小训练和测试阶段的不一致性,我们提出扩展最小风险训练算法,将不可分解的语料库级别的评价指标纳入考虑,同时仍然保持在线学习的优势。我们在在线学习算法中使用训练数据的一个子集来近似计算语料库级别的评价指标。中文-英文和英文-法文翻译任务上的实验证明我们的方法能够提高训练和测试阶段的一致性,相比于使用可分解评价指标的最小风险训练算法,我们的方法取得了显著的提升。

     

    Abstract: While optimizing model parameters with respect to evaluation metrics has recently proven to benefit endto-end neural machine translation (NMT), the evaluation metrics used in the training are restricted to be defined at the sentence level to facilitate online learning algorithms. This is undesirable because the final evaluation metrics used in the testing phase are usually non-decomposable (i.e., they are defined at the corpus level and cannot be expressed as the sum of sentence-level metrics). To minimize the discrepancy between the training and the testing, we propose to extend the minimum risk training (MRT) algorithm to take non-decomposable corpus-level evaluation metrics into consideration while still keeping the advantages of online training. This can be done by calculating corpus-level evaluation metrics on a subset of training data at each step in online training. Experiments on Chinese-English and English-French translation show that our approach improves the correlation between training and testing and significantly outperforms the MRT algorithm using decomposable evaluation metrics.

     

/

返回文章
返回