We use cookies to improve your experience with our site.

面向仅有稀疏数据的移动云应用的一种自动化性能预测方法

An Approach to Automatic Performance Prediction for Cloud-enhanced Mobile Applications with Sparse Data

  • 摘要: 在移动云计算中,将移动应用中计算密集的部分迁移到云上执行从而提升应用的性能有着很大的吸引力。而为了做出好的迁移决策,已有的研究工作利用机器学习技术基于历史数据预测应用在不同迁移方案下将达到的不同性能。然而,在真实的移动云计算场景中,应用的历史数据往往都是稀疏的,这一特性所带来的问题在已有的研究中却很少被关注。在本文中,我们针对数据稀疏这一特性设计了两阶段的混合框架来预测移动云应用的性能。第一阶段利用已有的历史数据训练若干个多层神经网络以预测一系列的运行中间参数。此训练得来的一部分神经网络能够在多个应用之间复用,从而减轻数据稀疏带来的影响。基于第一阶段预测的中间参数,第二阶段利用确定性的算法估计应用总体的性能。即便对于新发布的应用,在历史执行数据极少的情况下,确定性的算法也能够在一定程度上保证预测的准确度。我们将这一框架应用于一个带有云加速的物体识别应用上进行验证,结果显示我们的方案能够准确地预测应用的性能并且对数据稀疏问题有较好的鲁棒性。

     

    Abstract: In mobile cloud Computing (MCC), offloading compute-intensive parts of a mobile application onto the cloud is an attractive method to enhance application performance. To make good offloading decisions, history-based machine-learning techniques are proposed to predict application performance under various offloading schemes. However, the data sparsity problem is common in a realistic MCC scenario but is rarely the concern of existing works. In this paper, we employ a two-phase hybrid framework to predict performance for cloud-enhanced mobile applications, which is designed to be robust to the data sparsity. By training several multi-layer neural networks with historical execution records, the first phase automatically predicts some intermediate parameters for each execution of an application. The models learned by these neural networks can be shared among different applications thus alleviating the data sparsity. Based on these predicted intermediate parameters and the application topology, the second phase deterministically calculates the estimated values of the performance metrics. The deterministic algorithm can partially guarantee the prediction accuracy of newly published applications even with no execution records. We evaluate our approach with a cloud-enhanced object recognition application and show that our approach can precisely predict the application performance and is robust to data sparsity.

     

/

返回文章
返回