We use cookies to improve your experience with our site.

一种面向数据流的命名数据网络编程模型

A Dataflow-Oriented Programming Interface for Named Data Networking

  • 摘要: 命名数据网络(NDN)通过采用以数据驱动代替地理位置驱动的通信模式,能够对网络层的数据流动提供更好的支持。然而,由于缺乏适当的传输层协议支持,应用开发人员必须自行处理诸如数据分段、数据包验证以及流量控制等复杂任务。在本研究中,我们设计了一种面向数据流的编程模型,为NDN提供传输策略支持,以提高应用开发效率。该模型提供两种应用数据单元(ADU)获取策略,采用能够根据当前网络状态和数据生成速率进行自适应的ADU流水线算法来控制数据流动。该模型同时还提供网络测量机制来监测诸多影响应用程序性能的关键指标。通过在全球NDN测试床上搭建横跨11个时区的实时视频流应用来验证该编程模型的功能和性能。实验结果表明,该模型能够有效的支持开发高性能的、数据流驱动的NDN应用程序。

     

    Abstract: Inheriting from a data-driven communication pattern other than a location-driven pattern, named data networking (NDN) offers better support to network-layer dataflow. However, the application developers have to handle complex tasks, such as data segmentation, packet verification, and flow control, due to the lack of proper transport-layer protocols over the network layer. In this study, we design a dataflow-oriented programming interface to provide transport strategies for NDN, which greatly improves the efficiency in developing applications. This interface presents two application data unit (ADU) retrieval strategies according to different data publishing patterns, in which it adopts an adaptive ADU pipelining algorithm to control the dataflow based on the current network status and data generation rate. The interface also offers network measurement strategies to monitor an abundance of critical metrics influencing the application performance. We verify the functionality and performance of our interface by implementing a video streaming application spanning 11 time zones over the worldwide NDN testbed. Our experiments show that the interface can efficiently support developing high-performance and dataflow-driven NDN applications.

     

/

返回文章
返回