We use cookies to improve your experience with our site.

基于条件循环生成式对抗网络的人脸图像属性变换

Facial Image Attributes Transformation via Conditional Recycle Generative Adversarial Networks

  • 摘要: 本研究针对人脸图像属性变换提出了一种新的条件循环生成对抗网络,能够在不改变身份的情况下转换高层次的语义人脸属性。在我们的方法中,我们将输入源脸部图像输入到具有目标属性条件的条件生成器以生成具有目标属性的脸部。然后我们将生成的面循环回收到具有源属性条件的相同条件生成器。最终生成的脸部图像应该与源脸部图像具有相同的身份特征和脸部属性。因此,我们引入一个循环重建损失来强制最终生成的面部图像和源面部图像是相同的。在CelebA数据集的实验评估证明了我们方法的有效性。定性结果表明,我们的方法可以学习并生成具有指定属性的高质量且保持身份特征的面部图像。

     

    Abstract: This study introduces a novel conditional recycle generative adversarial network for facial attribute transformation, which can transform high-level semantic face attributes without changing the identity. In our approach, we input a source facial image to the conditional generator with target attribute condition to generate a face with the target attribute. Then we recycle the generated face back to the same conditional generator with source attribute condition. A face should be similar with that of the source face in personal identity and facial attributes is generated. Hence, we introduce a recycle reconstruction loss to enforce the final generated facial image and the source facial image to be identical. Evaluations on the CelebA dataset demonstrate the effectiveness of our approach. Qualitative results show that our method can learn and generate high-quality identity-preserving facial images with specified attributes.

     

/

返回文章
返回