We use cookies to improve your experience with our site.

基于块匹配三维滤波和卷积神经网络的图像去噪

3D Filtering by Block Matching and Convolutional Neural Network for Image Denoising

  • 摘要: 基于快匹配三维滤波的方法再图像去噪任务种取得了巨大的成功,然而人工设定的滤波参数不能很好地描述有噪声图像与无噪声图像地映射模型。本文介绍通过卷积网络完成三位滤波步骤,学习一个更为拟合的去噪模型。利用可学习模型,先验知识能够被利用以实现更好的有噪图像到清晰图像的映射。这个快匹配与卷积神经网络结合的模型能够对不同形状和强度的噪声图像取得较好去噪效果,特别是具有较高强度噪声的图像。实验表明本方法在较强噪声图像(σ>40)中取得了较高的峰值信噪比,且在对比的集中方法中具有最好的视觉质量。

     

    Abstract: Block matching based 3D filtering methods have achieved great success in image denoising tasks. However, the manually set filtering operation could not well describe a good model to transform noisy images to clean images. In this paper, we introduce convolutional neural network (CNN) for the 3D filtering step to learn a well fitted model for denoising. With a trainable model, prior knowledge is utilized for better mapping from noisy images to clean images. This block matching and CNN joint model (BMCNN) could denoise images with different sizes and different noise intensity well, especially images with high noise levels. The experimental results demonstrate that among all competing methods, this method achieves the highest peak signal to noise ratio (PSNR) when denoising images with high noise levels (σ > 40), and the best visual quality when denoising images with all the tested noise levels.

     

/

返回文章
返回