We use cookies to improve your experience with our site.

一种针对移动增强现实系统设计的基于几何信息的点云约减方法

A Geometry-Based Point Cloud Reduction Method for Mobile Augmented Reality System

  • 摘要: 本文中,我们提出了一个基于几何信息的点云约减算法,进而针对城市场景研究了一个实时的移动增强现实系统。我们通过结合空间点的重建误差和约束其空间几何分布的方式,构建了一个新的目标函数。在此目标函数基础上,用混合整数规划求解点云约减问题。而本文中研究的移动增强现实系统右离线和在线两部分组成。在离线阶段,我们用运动恢复结构的方法建立了定位数据库,还用前文提到的点云约减算法压缩了点云数据。而在在线阶段,我们采用结合基于图像的定位算法和连续姿态跟踪算法来实时地计算相机姿态。在基准数据和实际数据上的实验结果表明,与已有算法相比,本文提出的基于几何信息的点云约减方法选出来的点云子集可以使基于图像的定位方法有更高的定位成功率。在移动平台上的实验也表明提出的点云约减算法不仅减少了初始化和再初始化的时间,而且可以节省内存占用,还可用于一个可扩展的、实时的移动增强现实系统。

     

    Abstract: In this paper, a geometry-based point cloud reduction method is proposed, and a real-time mobile augmented reality system is explored for applications in urban environments. We formulate a new objective function which combines the point reconstruction errors and constraints on spatial point distribution. Based on this formulation, a mixed integer programming scheme is utilized to solve the points reduction problem. The mobile augmented reality system explored in this paper is composed of the offline and online stages. At the offline stage, we build up the localization database using structure from motion and compress the point cloud by the proposed point cloud reduction method. While at the online stage, we compute the camera pose in real time by combining an image-based localization algorithm and a continuous pose tracking algorithm. Experimental results on benchmark and real data show that compared with the existing methods, this geometry-based point cloud reduction method selects a point cloud subset which helps the image-based localization method to achieve higher success rate. Also, the experiments conducted on a mobile platform show that the reduced point cloud not only reduces the time consuming for initialization and re-initialization, but also makes the memory footprint small, resulting a scalable and real-time mobile augmented reality system.

     

/

返回文章
返回