We use cookies to improve your experience with our site.

基于GD-DNA的等距形变三维形状部分匹配算法

Isometric 3D Shape Partial Matching Using GD-DNA

  • 摘要: 等距形变三维形状的部分匹配在近年来引起了极大关注,在形状识别、纹理映射等领域具有重要的应用价值。本文提出了一种新颖的等距形变三维形状部分匹配算法,使用测地圆盘的拉普拉斯谱特征(GD-DNA),将形状间的部分匹配转变成相同半径测地圆盘之间的匹配。首先,我们提取部分形状包含的最大测地圆盘,和整体形状上等半径的测地圆盘进行比较。这里测地圆盘的拉普拉斯谱特征作为匹配度量。其次,我们根据匹配的测地圆盘对,使用广义多维尺度(GMDS)算法和欧式嵌入算法来获得最终的点到点的对应,完成匹配任务。本文提出的GD-DNA描述符具有很强的区分性,能够很好地解决具有挑战性的部分形状匹配时的基点选择问题。我们在形状检索竞赛(SHREC16)基准数据集上进行了实验,验证了算法的有效性。和当前现有的等距形变部分匹配算法相比,我们的算法取得了更高的匹配精度。

     

    Abstract: Isometric 3D shape partial matching has attracted a great amount of interest, with a plethora of applications ranging from shape recognition to texture mapping. In this paper, we propose a novel isometric 3D shape partial matching algorithm using the geodesic disk Laplace spectrum (GD-DNA). It transforms the partial matching problem into the geodesic disk matching problem. Firstly, the largest enclosed geodesic disk extracted from the partial shape is matched with geodesic disks from the full shape by the Laplace spectrum of the geodesic disk. Secondly, Generalized Multi-Dimensional Scaling algorithm (GMDS) and Euclidean embedding are conducted to establish final point correspondences between the partial and the full shape using the matched geodesic disk pair. The proposed GD-DNA is discriminative for matching geodesic disks, and it can well solve the anchor point selection problem in challenging partial shape matching tasks. Experimental results on the Shape Retrieval Contest 2016 (SHREC'16) benchmark validate the proposed method, and comparisons with isometric partial matching algorithms in the literature show that our method has a higher precision.

     

/

返回文章
返回