We use cookies to improve your experience with our site.

图计算加速器综述

A Survey on Graph Processing Accelerators: Challenges and Opportunities

  • 摘要: 图结构因其对物体关系的灵活表达能力,在数据科学和机器学习等领域有着极其广阔的应用前景。为此,学术界和工业界涌现出了大量面向图计算系统优化方面的研究,以期在通用架构上获得更高的性能和能效,然而图计算的性能仍普遍受制于底层处理架构。在这个背景下,新兴的图计算加速器逐渐涌现出来,它们通过面向图计算的定制化硬件加速,可以获得远超仅通过系统软件方案所能提供的收益,对图计算而言至关重要。这篇文章系统地调研分析了图计算加速器设计和实现的最新研究进展。具体地,我们首先从三个核心方面介绍了图计算加速器的相关技术:预处理,并行图处理和运行时调度。接着我们总结分析了图计算加速器在现有工作中的相关评测和结果,我们发现由于图计算特征的多样性和硬件配置的复杂性,不同加速器有其各自的优势。最后我们对图计算加速器的挑战性研究点进行了详细阐述,并进一步探讨了图计算加速器在未来的巨大机遇和前景。目的: 综述图计算加速器相关研究工作,总结回顾图计算加速器设计和实现的技术方法,分析其设计过程中的挑战,并探索未来相关研究的机遇。创新点: 1)调研对象图计算加速器是一种具有广泛应用前景的新兴技术,本文系统性的对图计算加速器进行了全面的总结分析;2)将图计算加速器普遍采用的技术流程总结成三个核心方面:预处理,并行图处理和运行时调度;3)对图计算加速器的评测和结果进行了详细的总结分析,指出了图计算加速器评测尚待完善的方面;4)分析指出了现有图计算加速器设计的问题挑战;5)探索提出了图计算加速器未来研究的机遇。方法:文章首先综述了图计算加速器研究的最新进展,包括理论和各种软硬件技术手段。然后归纳分析了图计算加速器在现有工作中的评测结果以及发现,最后总结提出了存在的挑战和机遇。结论:图计算加速器为解决图计算应用在性能和能效方面的严峻挑战提供了一个硬件架构角度的思路。大量研究结果表明,通过面向图计算的定制化硬件加速来进一步提升图计算的性能和能效是必要且有效的。图计算加速器是一种新兴技术,已经有越来越多的工作聚焦于图计算加速器,其设计和使用还存在很多挑战,随着硬件技术和大数据应用的发展,图计算加速器拥有着巨大的机遇和前景。

     

    Abstract: Graph is a well known data structure to represent the associated relationships in a variety of applications, e.g., data science and machine learning. Despite a wealth of existing efforts on developing graph processing systems for improving the performance and/or energy efficiency on traditional architectures, dedicated hardware solutions, also referred to as graph processing accelerators, are essential and emerging to provide the benefits significantly beyond what those pure software solutions can offer. In this paper, we conduct a systematical survey regarding the design and implementation of graph processing accelerators. Specifically, we review the relevant techniques in three core components toward a graph processing accelerator: preprocessing, parallel graph computation, and runtime scheduling. We also examine the benchmarks and results in existing studies for evaluating a graph processing accelerator. Interestingly, we find that there is not an absolute winner for all three aspects in graph acceleration due to the diverse characteristics of graph processing and the complexity of hardware configurations. We finally present and discuss several challenges in details, and further explore the opportunities for the future research.

     

/

返回文章
返回