We use cookies to improve your experience with our site.

基于自适应参考图像与比例图谱的散焦高光谱图像去模糊

Defocus Hyperspectral Image Deblurring with Adaptive Reference Image and Scale Map

  • 摘要: 散焦模糊是装配了简单透镜的高光谱成像系统中遇到的主要问题之一。以往大多数高光谱图像去模糊方法只使用单个通道的结构信息作为先验,忽略了高光谱图像自身的特性。在这篇文章中,我们分析了光谱通道之间的相关性与差异性,并提出了一个针对散焦高光谱图像的去模糊算法框架。首先,我们将高光谱图像通道分为两组,将模糊程度较低的一组看作一组光谱基。然后,根据光谱通道内在的相关性,我们可以利用光谱基为每个模糊通道生成一个参考图像,用于指导模糊通道的重建。最后,考虑到参考图像与真实图像之间可能存在差异性,我们在模型中引入了一个基于梯度相似的比例图谱作为先验条件。公开数据集上的实验结果显示,采用我们提出的方法重建得到的图像相比其他对比方法具有更出色的视觉效果与评价指标。

     

    Abstract: Defocus blur is one of the primary problems among hyperspectral imaging systems equipped with simple lenses. Most of the previous deblurring methods focus on how to utilize structure information of a single channel, while ignoring the characteristics of hyperspectral images. In this work, we analyze the correlations and differences among spectral channels, and propose a deblurring framework for defocus hyperspectral images. First, we divide the hyperspectral image channels into two sets, and the set with less blur is treated as a group of spectral bases. Then, according to the inherent correlations of spectral channels, a reference image can be derived from the spectral bases to guide the restoration of blurry channels. Finally, considering the disagreement between the reference image and the ground truth, a scale map based on gradient similarity is introduced as a prior in the deblurring framework. The experimental results on public dataset demonstrate that the proposed method outperforms several image deblurring methods in both visual effect and quality metrics.

     

/

返回文章
返回