We use cookies to improve your experience with our site.

运用语义搜索活动轨迹

Searching Activity Trajectories with Semantics

  • 摘要: 随着智能手机和移动互联网的广泛使用,社交网络用户产生了大量带有地理标签的推文、照片和视频,形成了大量的信息轨迹,这些轨迹不仅揭示了他们的时空动态,还揭示了他们在现实世界中的活动。现有的空间轨迹查询研究主要侧重于分析用户轨迹的时空特性,而对用户活动的理解却基本未涉及。在本文中,我们将嵌入在轨迹中的活动信息的语义集成到查询建模和处理中,目的是为终端用户提供信息更加丰富和有意义的结果。为此,我们提出了一种新的轨迹查询方法,它不仅考虑了时空的接近性,而且更重要的是,利用文本挖掘领域的成熟技术-概率主题模型,来捕捉数据和查询之间的活动语义相关性。为了支持高效的查询处理,我们将轨迹子结构上的概率主题分布集成到相应索引层的时空范围中,设计了一个基于网格的分层索引。这种特殊的结构使自顶向下搜索算法能够遍历索引,同时在空间和主题维度上修剪不合格的轨迹。在实际数据集上的实验结果表明,所提出的索引和轨迹搜索算法具有非常好的效率性和稳定性。

     

    Abstract: With the widespread use of smart phones and mobile Internet, social network users have generated massive geo-tagged tweets, photos and videos to form lots of informative trajectories which reveal not only their spatio-temporal dynamics, but also their activities in the physical world. Existing spatial trajectory query studies mainly focus on analyzing the spatio-temporal properties of the users' trajectories, while leaving the understanding of their activities largely untouched. In this paper, we incorporate the semantics of the activity information embedded in trajectories into query modelling and processing, with the aim of providing end users more informative and meaningful results. To this end, we propose a novel trajectory query that not only considers the spatio-temporal closeness but also, more importantly, leverages a proven technique in text mining field, probabilistic topic modelling, to capture the semantic relatedness of the activities between the data and query. To support efficient query processing, we design a hierarchical grid-based index by integrating the probabilistic topic distribution on the substructures of trajectories and their spatio-temporal extent at the corresponding level of the index hierarchy. This specialized structure enables a top-down search algorithm to traverse the index while pruning unqualified trajectories in spatial and topical dimensions simultaneously. The experimental results on real-world datasets demonstrate the good efficiency and scalability performance of the proposed indices and trajectory search methods.

     

/

返回文章
返回