We use cookies to improve your experience with our site.

基于图像与病灶融合特征的自动糖网病筛查级联框架

Automatic Diabetic Retinopathy Screening via Cascaded Framework Based on Image- and Lesion-Level Features Fusion

  • 摘要: 糖尿病视网膜病变(糖网病)的早期检测对于预防失明至关重要。然而,目前医学图像数量急剧增加,临床医生手动分析眼底图像耗时长。在本文中,我们提出了一种使用彩色眼底图像的自动糖网病筛查方法。我们的方法包括三个主要组成部分:边缘引导的候选微动脉瘤检测,使用混合特征的候选区域分类,以及使用图像水平和病病灶水平的融合特征预测糖网病。我们将筛选任务划分为两个子分类任务:1)通过朴素贝叶斯分类器筛选候选微动脉瘤;2)使用支持向量机分类器预测糖网病。我们的方法可以有效地缓解不平衡的样本分布问题。我们在两个公共数据库上评估我们的方法:Lariboisière数据库和Messidor数据库。我们的方法在Lariboisière数据库上的曲线下面积为0.908,在Messidor数据库上的曲线下面积为0.832,这体现了我们的方法优于现有方法。

     

    Abstract: The early detection of diabetic retinopathy is crucial for preventing blindness. However, it is time-consuming to analyze fundus images manually, especially considering the increasing amount of medical images. In this paper, we propose an automatic diabetic retinopathy screening method using color fundus images. Our approach consists of three main components:edge-guided candidate microaneurysms detection, candidates classification using mixed features, and diabetic retinopathy prediction using fused features of image level and lesion level. We divide a screening task into two sub-classification tasks:1) verifying candidate microaneurysms by a naive Bayes classifier; 2) predicting diabetic retinopathy using a support vector machine classifier. Our approach can effectively alleviate the imbalanced class distribution problem. We evaluate our method on two public databases:Lariboisière and Messidor, resulting in an area under the curve of 0.908 on Lariboisière and 0.832 on Messidor. These scores demonstrate the advantages of our approach over the existing methods.

     

/

返回文章
返回