We use cookies to improve your experience with our site.

网约车平台中基于隐匿区域的乘客位置信息保护机制

Cloaking Region Based Passenger Privacy Protection in Ride-Hailing Systems

  • 摘要: 随着共享经济的快速发展,网约车平台的用户数量迅速增长。 这在为大众提供出行便利的同时,也增加了民众对网约车平台是否会滥用乘客位置信息的担忧。为了匹配乘客与司机,网约车平台会收集乘客与司机的位置信息。平台可以基于位置信息推定乘客的生活、工作地点,生活习惯等隐私信息。已经有研究指出,一些特定乘客有意愿向网约车平台支付额外的费用以保护自身的位置隐私,并且提出了一个基于隐匿区域(cloaking region)的乘客位置隐私保护机制。在此机制中,乘客向平台发送自己所在的隐匿区域;平台向乘客返回该区域中的所有司机位置;乘客再选择距离自己最近的司机并与司机通过安全的信道直接联系。在这一过程中平台只能获取乘客的隐匿区域以及被选中的司机的位置,但无法获取乘客的具体位置。但是,有研究者提出了针对该机制的攻击模型,即使用Voronoi diagram推测乘客的位置。为应对该攻击模型,本文优化了已有的位置隐私保护机制,以最大化社会福利为目标,以保护乘客位置隐私为限制条件,利用最优二分图匹配算法进行乘客与司机的订单分派。由于使用隐匿区域而非乘客的真实位置进行匹配,匹配结果要差于使用真实位置进行匹配的最优结果。文中详尽分析了二者差距的理论上限。优化后的机制还考虑到司机的利益,支持司机设置最远接送距离。此外,由于基于隐匿区域所进行的全局匹配可能会损害某些乘客的个人利益,我们提出了三种补偿机制,分别基于个人损失,社会福利损失,以及综合损失。基于仿真数据以及真实数据的实验结果显示我们的机制的表现优于未优化的机制,可以提高社会福利约15%。此外,实验结果还展示了三种补偿机制补偿价格的异同。价格补偿提升了机制的公平性。

     

    Abstract: With the quick development of the sharing economy, ride-hailing services have been increasingly popular worldwide. Although the service provides convenience for users, one concern from the public is whether the location privacy of passengers would be protected. Service providers (SPs) such as Didi and Uber need to acquire passenger and driver locations before they could successfully dispatch passenger orders. To protect passengers’ privacy based on their requirements, we propose a cloaking region based order dispatch scheme. In our scheme, a passenger sends the SP a cloaking region in which his/her actual location is not distinguishable. The trade-off of the enhanced privacy is the loss of social welfare, i.e., the increase in the overall pick-up distance. To optimize our scheme, we propose to maximize the social welfare under passengers’ privacy requirements. We investigate a bipartite matching based approach. A theoretical bound on the matching performance under specific privacy requirements is shown. Besides passengers’ privacy, we allow drivers to set up their maximum pick-up distance in our extended scheme. The extended scheme could be applied when the number of drivers exceeds the number of passengers. Nevertheless, the global matching based scheme does not consider the interest of each individual passenger. The passengers with low privacy requirements may be matched with drivers far from them. To this end, a pricing scheme including three strategies is proposed to make up for the individual loss by allocating discounts on their riding fares. Extensive experiments on both real-world and synthetic datasets show the efficiency of our scheme.

     

/

返回文章
返回