We use cookies to improve your experience with our site.

一种基于多重残差网络的随机渐进式光子映射的降噪方法

Denoising Stochastic Progressive Photon Mapping Renderings Using a Multi-Residual Network

  • 摘要: 随机渐进式光子映射是一种被广泛使用的全局光照算法,作为光子映射的改进算法,它可以有效地计算焦散等复杂的光照效果。然而,作为一种有偏且一致的算法,随机渐进式光子映射在渲染参数不合适或渲染迭代次数不足时,其渲染结果常常被偏差和方差同时影响,具体表现为物体表面大小各异的光斑及噪声,这有别于其他无偏且一致的算法。最近,深度学习被广泛应用于降噪无偏且一致的基于蒙特卡洛的渲染算法,并有着出色的效果。但此类基于学习的方法还没有被应用于降噪有偏的算法。在本文中,我们提出了第一个基于深度学习的,在图像空间对随机渐进式光子映射这一有偏算法进行降噪的方法。在对随机渐进式光子映射进行降噪时,拥有更大的视野域的降噪网络可以更有效地处理多尺度的光斑和噪声,特别是位于低频表面的较大的光斑,但这类降噪网络往往不善于处理高频区域的噪声。而一个拥有小视野域的降噪网络则恰好相反。基于以上观察,为了更有效地处理随机渐进式光子映射的渲染结果中独特的大小各异的光斑及噪声,我们提出了一种全新的网络结构,它使用了一组特殊的残差格模块。使用这种残差格模块同时集合大视野域和小视野域的优点,可以有效处理随机渐进式光子映射的多尺度噪声。同时,为了进一步提高降噪质量并更好地保持光照细节,我们首先将渲染结果分为全局和焦散两个成分,再输入两个网络分别进行降噪。此外,我们还提出了一组光子相关的辅助特征向量,用于帮助降噪网络更高效地处理噪声,同时有效保持焦散等光照细节。我们使用了若干场景自行制作了大量的训练数据去训练提出的降噪网络。同时,我们还引入了其他几种在蒙特卡洛降噪领域表现优异的方法以作比较,并设计了若干实验验证其模块的有效性。实验结果显示,相比于其他方法,我们提出的方法可以有效处理随机渐进式光子映射中的多尺度噪声,特别是善于处理位于低频区域的较大光斑,同时又可以保留较多光照细节。其相较于其他的无偏算法,随机渐进式光子映射的有偏这一特性,使得其渲染结果中存在多种不同的误差。因此,为其设计降噪算法便颇具挑战性。本文提出了第一种基于深度学习的随机渐进式光子映射的降噪算法,并探索出了一条可行的解决思路。在这个科研领域中,仍有许多方向值得探索,例如本文尚未解决时序连贯性、极大光斑等棘手问题。

     

    Abstract: Stochastic progressive photon mapping (SPPM) is one of the important global illumination methods in computer graphics. It can simulate caustics and specular-diffuse-specular lighting effects efficiently. However, as a biased method, it always suffers from both bias and variance with limited iterations, and the bias and the variance bring multi-scale noises into SPPM renderings. Recent learning-based methods have shown great advantages on denoising unbiased Monte Carlo (MC) methods, but have not been leveraged for biased ones. In this paper, we present the first learning-based method specially designed for denoising-biased SPPM renderings. Firstly, to avoid conflicting denoising constraints, the radiance of final images is decomposed into two components: caustic and global. These two components are then denoised separately via a two-network framework. In each network, we employ a novel multi-residual block with two sizes of filters, which significantly improves the model’s capabilities, and makes it more suitable for multi-scale noises on both low-frequency and high-frequency areas. We also present a series of photon-related auxiliary features, to better handle noises while preserving illumination details, especially caustics. Compared with other state-of-the-art learning-based denoising methods that we apply to this problem, our method shows a higher denoising quality, which could efficiently denoise multi-scale noises while keeping sharp illuminations.

     

/

返回文章
返回