We use cookies to improve your experience with our site.

基于渐进式通道注意力网络的参考图引导超分辨率研究

Reference Image Guided Super-Resolution via Progressive Channel Attention Networks

  • 摘要: 近年来,用于单张图像超分辨率重建(SISR)的卷积神经网络(CNN)变得越来越复杂,使得继续提升单图像超分辨率重建的性能变得更加具有挑战性。与此同时,基于参考图引导的图像超分辨率重建(RefSR)算法成为一种提高SR性能的有效策略。在RefSR中,引入的高分辨率(HR)参考图像可以提升高频残差的预测结果。然而现有的基于CNN的RefSR方法大都是简单地将低分辨率图像和高清参考图在通道维进行级联,平等地对待参考图(Ref)和低分辨率图(LR)中的有效信息。但是参考图和低分辨率输入图对最终SR结果的贡献不同,因此,本文提出了用于RefSR的渐进式通道注意力网络(PCANet)。本文有两个技术贡献。首先,本文提出了一种新颖的通道注意力模块(CAM),该模块通过对空间特征进行加权平均而不是使用全局平均来估计通道加权参数。其次,考虑到当LR输入包含更多细节时可以改善残差预测过程,因此本文逐级执行超分辨率,这样可以利用多尺度的参考图像信息。图中展示的是本文所提出的超分框架PCANet。首先利用块匹配算法提取Ref与LR最相似的块PR和PLPRPL进行预处理后输入到网络中进行训练。PHi是网络第i层的输出。在数十万次迭代后网络趋近于最优解。
    本文在三个基准数据集上进行了定性和定量的评估。结果显示:本文的方法在三个数据集上均取得最好的表现,PSNR平均结果要高于第二名至少0.3db以上。另外误差热力图显示本文的方法恢复的图像结果最接近于真值(ground truth)。这说明参考图的引入可以有效地辅助低分辨率图像重建。本文提出新的注意力通道机制来强化对不同信息的使用,以及采取渐进式网络结构充分挖掘参考图的高频信息。在今后的工作中,本文的算法可以将这一方法应用到更多的领域,如:基于参考图的去噪,基于参考图的去模糊等。

     

    Abstract: In recent years, the convolutional neural networks (CNNs) for single image super-resolution (SISR) are becoming more and more complex, and it is more challenging to improve the SISR performance. In contrast, the reference image guided super-resolution (RefSR) is an effective strategy to boost the SR (super-resolution) performance. In RefSR, the introduced high-resolution (HR) references can facilitate the high-frequency residual prediction process. According to the best of our knowledge, the existing CNN-based RefSR methods treat the features from the references and the low-resolution (LR) input equally by simply concatenating them together. However, the HR references and the LR inputs contribute differently to the final SR results. Therefore, we propose a progressive channel attention network (PCANet) for RefSR. There are two technical contributions in this paper. First, we propose a novel channel attention module (CAM), which estimates the channel weighting parameter by weightedly averaging the spatial features instead of using global averaging. Second, considering that the residual prediction process can be improved when the LR input is enriched with more details, we perform super-resolution progressively, which can take advantage of the reference images in multi-scales. Extensive quantitative and qualitative evaluations on three benchmark datasets, which represent three typical scenarios for RefSR, demonstrate that our method is superior to the state-of-the-art SISR and RefSR methods in terms of PSNR (Peak Signal-to-Noise Ratio) and SSIM (Structural Similarity).

     

/

返回文章
返回