We use cookies to improve your experience with our site.

ATLRec:用于跨领域推荐的注意力对抗迁移学习网络

ATLRec: An Attentional Adversarial Transfer Learning Network for Cross-Domain Recommendation

  • 摘要: 考虑到单域推荐中通常遇到的数据稀疏性和冷启动问题,通过实体链接将不同的域链接在一起,为更有效、更准确地实现推荐任务和其他任务提供了新的机会。利用来自辅助域的知识,可以提高目标域内的推荐性能。虽然已经有工作提出了一些跨领域的推荐方法来提高目标领域的推荐性能,但是其中大多数现有的基于迁移的方法更关注如何转移,而不是如何获得领域共享的特性,这导致了特定于某一单一领域的特性被转移从而造成次优结果。虽然有些方法考虑了领域特定的特性,但大多数都是浅层模型,无法学习复杂的非线性用户-项目交互关系。现有的一些基于内容以及基于嵌入的方法也更依赖于辅助内容,如文本数据和可视数据。我们所提出的方法ATLRec受对抗转移学习的启发,仅使用来自两个域的隐式反馈的信息,就可以有效地捕获要转移的域共享特性和每个域的特定于域的特性。在ATLRec中,我们利用对抗性学习来生成两个域的用户-项交互的表示,从而使鉴别器不能识别它们属于哪个域,以获得域共享的特性。同时,每个域通过一个私有特征提取器学习其特定于该领域的特征。每个域的推荐都考虑了领域特有特征以及领域共享特征。我们进一步采用注意力机制,利用具有交互历史的共享用户来学习两个域的项的潜在因素,以便在共享空间中充分学习所有项的表示,即使不同域共享的项很少甚至没有。通过这种方法,我们可以在共享空间中表示来自源域和目标域的所有项,以便更好地链接不同域中的项,并捕获跨域项与项之间的相关性,从而促进域共享知识的学习。我们在各种真实数据集上进行了实验,实验结果证明该模型在推荐准确度等方面优于最先进的单域和跨域推荐方法。

     

    Abstract: Entity linking is a new technique in recommender systems to link users' interaction behaviors in different domains, for the purpose of improving the performance of the recommendation task. Linking-based cross-domain recommendation aims to alleviate the data sparse problem by utilizing the domain-sharable knowledge from auxiliary domains. However, existing methods fail to prevent domain-specific features to be transferred, resulting in suboptimal results. In this paper, we aim to address this issue by proposing an adversarial transfer learning based model ATLRec, which effectively captures domain-sharable features for cross-domain recommendation. In ATLRec, we leverage adversarial learning to generate representations of user-item interactions in both the source and the target domains, such that the discriminator cannot identify which domain they belong to, for the purpose of obtaining domain-sharable features. Meanwhile each domain learns its domain-specific features by a private feature extractor. The recommendation of each domain considers both domain-specific and domain-sharable features. We further adopt an attention mechanism to learn item latent factors of both domains by utilizing the shared users with interaction history, so that the representations of all items can be learned sufficiently in a shared space, even when few or even no items are shared by different domains. By this method, we can represent all items from the source and the target domains in a shared space, for the purpose of better linking items in different domains and capturing cross-domain item-item relatedness to facilitate the learning of domain-sharable knowledge. The proposed model is evaluated on various real-world datasets and demonstrated to outperform several state-of-the-art single-domain and cross-domain recommendation methods in terms of recommendation accuracy.

     

/

返回文章
返回