We use cookies to improve your experience with our site.

用于基于模型的图形转换安全分析的Markov Chain分布估算算法

Using Markov Chain Based Estimation of Distribution Algorithm for Model-Based Safety Analysis of Graph Transformation

  • 摘要: 关键安全系统的可靠性评估能力是设计现代关键安全系统最重要的需求之一,在安全系统中,甚至一个小故障可能会降低使用寿命或者对环境造成不可修复的损坏。模型校验是一种通过探测某一模型所有可获取状态(状态空间)自动验证或驳回系统性能的技术。在大型复杂的系统里,很可能会发生状态空间爆炸的问题。通过图形转换探测系统的状态空间时,当前状态运用的规则明确可以在下一状态使用的规则。换句话说,当前状态允许使用的规则仅仅取决于前一状态使用的规则,而不是那些在它之前的状态规则。
    这个事实促使我们使用Markov chain(MC)获取这种类型的依赖项并且使用分布评估算法(EDA)提升MC的质量。EDA是一种以每一代种群中最优个体学习和抽样概率模型指导最优解搜索的进化算法。为了验证本文所提出方法的效能,我们在GROOVE中执行它,GROOVE为一设计和模型校验图形转换系统的开源工具集。实验结果表明与指定通过图形转换的系统安全分析中现存元启发和进化技术相比,本文所提出的方法具有较高的速度和准确度。

     

    Abstract: The ability to assess the reliability of safety-critical systems is one of the most crucial requirements in the design of modern safety-critical systems where even a minor failure can result in loss of life or irreparable damage to the environment. Model checking is an automatic technique that verifies or refutes system properties by exploring all reachable states (state space) of a model. In large and complex systems, it is probable that the state space explosion problem occurs. In exploring the state space of systems modeled by graph transformations, the rule applied on the current state specifies the rule that can perform on the next state. In other words, the allowed rule on the current state depends only on the applied rule on the previous state, not the ones on earlier states. This fact motivates us to use a Markov chain (MC) to capture this type of dependencies and applies the Estimation of Distribution Algorithm (EDA) to improve the quality of the MC. EDA is an evolutionary algorithm directing the search for the optimal solution by learning and sampling probabilistic models through the best individuals of a population at each generation. To show the effectiveness of the proposed approach, we implement it in GROOVE, an open source toolset for designing and model checking graph transformation systems. Experimental results confirm that the proposed approach has a high speed and accuracy in comparison with the existing meta-heuristic and evolutionary techniques in safety analysis of systems specified formally through graph transformations.

     

/

返回文章
返回