We use cookies to improve your experience with our site.

基于缺失场景的硬件属性评估和约束

Evaluating and Constraining Hardware Assertions with Absent Scenarios

  • 摘要: 已有研究表明,从待验证设计黄金模型的模拟数据进行数据挖掘是一种有效的属性生成方法。然而,由于模拟数据的不完备性,所挖掘属性的真伪性有待验证。本文提出了一种缺失场景引导的硬件属性评估和约束框架。提出了Belief-failRate指标,来预测自动生成属性的真伪。通过同时考虑出现的自由变量取值组合和矛盾的缺失自由变量组合,该指标更倾向于把真属性放在高位排序上,而假属性被置于较低排序位置。另外,本文给出了一个Belief-failRate引导的属性约束方法,用以提高属性集合的质量。实验结果表明,相较于已有方法,本文的Belief-failRate方法能更好的将真属性排序在较高位置。另外,真伪评估结果引导的属性约束方法与之前方法相比,能产生更多的属性,覆盖设计的更多功能。

     

    Abstract: Mining from simulation data of the golden model in hardware design verification is an effective solution to assertion generation. While the simulation data is inherently incomplete, it is necessary to evaluate the truth values of the mined assertions. This paper presents an approach to evaluating and constraining hardware assertions with absent scenarios. A Belief-failRate metric is proposed to predict the truth/falseness of generated assertions. By considering both the occurrences of free variable assignments and the conflicts of absent scenarios, we use the metric to sort true assertions in higher ranking and false assertions in lower ranking. Our Belief-failRate guided assertion constraining method leverages the quality of generated assertions. The experimental results show that the Belief-failRate framework performs better than the existing methods. In addition, the assertion evaluating and constraining procedure can find more assertions that cover new design functionality in comparison with the previous methods.

     

/

返回文章
返回