We use cookies to improve your experience with our site.

联合结构信息与时间信息的动态社交推荐方法

Exploiting Structural and Temporal Influence for Dynamic Social-Aware Recommendation

  • 摘要: 为更好的向用户提供智能的、个性化的推荐,已有大量研究在学习用户偏好表征时,尝试将社交背景信息融合进用户偏好建模过程,进而实现更精确的推荐。大多数已有的方法通常处理静态的社交信息,而在实际应用场景中,用户行为不断变化,社交关系也动态改变。为探究动态的社交信息对用户变化的消费偏好的影响,本文提出一种结合结构信息与时间信息的动态社交推荐方法。该方法由两部分组成:社交影响力提取模块(SIL)与用户个人偏好建模模块(DPL)。在SIL中,我们将社交关系组织成社交图序列,利用图卷积网络学习社交背景信息,并且,我们设计注意力机制从结构性与时间性两方面学习社交权重。在DPL模块中,我们利用循环神经网络建模用户个人消费偏好。最终的用户表征来自于两个模块的结合。我们将提出的方法与几种已有的经典算法进行对比实验,实验使用的两个数据集收集自现实社交平台(Epinions和Gowalla),使用的评价指标为命中率和归一化折损累积增益(HR@10和NDCG@10)。实验结果显示,提出的方法在Epinions数据集上HR@10和NDCG@10分别高于对照方法8.06%-44.65%和4.07%-34.81%,在Gowalla数据集上则提升分别为7.97%-35.86%和7.59%-31.21%。此外,本工作中对所设计的注意力机制中的结构注意力机制和时间注意力机制进行了分析,结果显示在社交背景信息中,同时考虑两类信息能够更有效地表征用户,进而提升推荐效果。

     

    Abstract: Recent years have witnessed the rapid development of online social platforms, which effectively support the business intelligence and provide services for massive users. Along this line, large efforts have been made on the socialaware recommendation task, i.e., leveraging social contextual information to improve recommendation performance. Most existing methods have treated social relations in a static way, but the dynamic influence of social contextual information on users' consumption choices has been largely unexploited. To that end, in this paper, we conduct a comprehensive study to reveal the dynamic social influence on users' preferences, and then we propose a deep model called Dynamic Social-Aware Recommender System (DSRS) to integrate the users' structural and temporal social contexts to address the dynamic socialaware recommendation task. DSRS consists of two main components, i.e., the social influence learning (SIL) and dynamic preference learning (DPL). Specifically, in the SIL module, we arrange social graphs in a sequential order and borrow the power of graph convolution networks (GCNs) to learn social context. Moreover, we design a structural-temporal attention mechanism to discriminatively model the structural social influence and the temporal social influence. Then, in the DPL part, users' individual preferences are learned dynamically by recurrent neural networks (RNNs). Finally, with a prediction layer, we combine the users' social context and dynamic preferences to generate recommendations. We conduct extensive experiments on two real-world datasets, and the experimental results demonstrate the superiority and effectiveness of our proposed model compared with the state-of-the-art methods.

     

/

返回文章
返回