We use cookies to improve your experience with our site.

利用城市区域间的多重相关性进行人群流动预测

Exploiting Multiple Correlations Among Urban Regions for Crowd Flow Prediction

  • 摘要: 人群流动预测是城市计算领域重要的基础任务之一,准确的流量预测是交通管理、城市规划和公共安全管理等多个高阶应用的前提。但是,人群流动会受到不同区域之间多种复杂因素不同程度的影响。因此准确地表示面向人群流动模式的城市区域间相关性并充分地挖掘空间信息,对提高人群流动预测的准确性十分重要。在本文中,我们不仅考虑了城市区域的地理距离特征,也考虑了城市区域之间的交互频率和城市区域流量模式的相似性。我们将上述多个区域相关性建立成关系图结构。之后,我们提出一种基于深度学习的多图卷积门控循环单元(MGCGRU)模型,它能综合多重空间信息、时间信息、额外信息对城市人群流动进行准确的预测。针对时间信息,我们的模型使用较短的时间依赖特征以减少高动态环境下数据分布不稳定性的影响,并有利于减少空间复杂度。在上海的两个真实数据集上的实验结果表明,我们提出的模型优于其他先进的时空数据预测方法。由于考虑了更丰富的空间信息,我们的模型预测时的鲁棒性更高,且在多步预测中预测效果较好。

     

    Abstract: Crowd flow prediction has become a strategically important task in urban computing, which is the prerequisite for traffic management, urban planning and public safety. However, due to variousness of crowd flows, multiple hidden correlations among urban regions affect the flows. Besides, crowd flows are also influenced by the distribution of Points-of-Interests (POIs), transitional functional zones, environmental climate, and different time slots of the dynamic urban environment. Thus, we exploit multiple correlations between urban regions by considering the mentioned factors comprehensively rather than the geographical distance and propose multi-graph convolution gated recurrent units (MGCGRU) for capturing these multiple spatial correlations. For adapting to the dynamic mobile data, we leverage multiple spatial correlations and the temporal dependency to build an urban flow prediction framework that uses only a little recent data as the input but can mine rich internal modes. Hence, the framework can mitigate the influence of the instability of data distributions in highly dynamic environments for prediction. The experimental results on two real-world datasets in Shanghai show that our model is superior to state-of-the-art methods for crowd flow prediction.

     

/

返回文章
返回