We use cookies to improve your experience with our site.

基于样本传输学习的无源域适应

Source-Free Unsupervised Domain Adaptation with Sample Transport Learning

  • 摘要: 研究背景
    当前,无监督域适应在机器学习领域得到了良好的应用。无监督域适应的本质是利用有标签的源域样本训练无标签且分布不同的目标域样本。大部分的方法利用减小分布误差实现域适应的目的。然而,在一些特殊场景下,源域数据是不可获得的,我们称该场景为无源域适应(source-free domain adaptation)。这给域适应增加了一定的难度,而现有的方法并没有聚焦无源域适应场景。为此,本文提出一种基于分类器的无源域适应方法。
    研究目的
    本文从源域隐私保护,即源域数据不可得的角度设计模型,致力于解决无源域适应的问题,通过已提供的分类模型设计有效的域适应方案。
    研究方法
    本文首先借助已训练的分类器对所有目标域样本进行伪标签的赋值,并利用已有的目标域样本+伪标签建立伪源域,此时伪源域的样本为非可靠样本。其次,利用条件最大平均分布损失转换目标域,使其向理想的源域以及现有的分类器靠拢。当目标域样本转化后,利用文中提及的样本传输规则对转化后的样本进行判断,通过该规则的样本被视为可靠样本,并替换伪源域中相应的样本。循环上述步骤,最终实现无源域适应的目的。
    研究结果
    实验结果表明本文方法具有有效性。同现有的域适应方法对比,本文的方法在无源域的场景中具有较为明显的优势。其次我们探讨了本文方法相关的消融实验,明确了样本传输规则对本文方法的重要性。最后,我们验证了样本传输阈值对规则的重大影响。
    研究结论
    在无源域适应中,可靠的分类器或分类模型都可以一定程度上解决源域样本不可得的问题。在未来的工作中,我们将重点研究无源域适应下的深度学习方法及对抗学习方法。

     

    Abstract: Unsupervised domain adaptation (UDA) has achieved great success in handling cross-domain machine learning applications. It typically benefits the model training of unlabeled target domain by leveraging knowledge from labeled source domain. For this purpose, the minimization of the marginal distribution divergence and conditional distribution divergence between the source and the target domain is widely adopted in existing work. Nevertheless, for the sake of privacy preservation, the source domain is usually not provided with training data but trained predictor (e.g., classifier). This incurs the above studies infeasible because the marginal and conditional distributions of the source domain are incalculable. To this end, this article proposes a source-free UDA which jointly models domain adaptation and sample transport learning, namely Sample Transport Domain Adaptation (STDA). Specifically, STDA constructs the pseudo source domain according to the aggregated decision boundaries of multiple source classifiers made on the target domain. Then, it refines the pseudo source domain by augmenting it through transporting those target samples with high confidence, and consequently generates labels for the target domain. We train the STDA model by performing domain adaptation with sample transport between the above steps in alternating manner, and eventually achieve knowledge adaptation to the target domain and attain confident labels for it. Finally, evaluation results have validated effectiveness and superiority of the proposed method.

     

/

返回文章
返回