基于文档级与查询级段落累积收益的文档排序方法
Leveraging Document-Level and Query-Level Passage Cumulative Gain for Document Ranking
-
摘要: 文档排序是信息检索领域相关研究中最重要也最具挑战性的问题之一。给定一个搜索查询和候选文档集合,文档排序的目标为根据文档与查询的相关性分数生成文档排序列表。近年来,随着互联网文档长度的增长和人类获取直接答案片段的需求的增加,一些学者开始尝试建模细粒度(例如句子级,段落级等)的文档相关性,并基于此提升文档排序任务的表现。然而,大部分相关工作通常仅建模独立的细粒度相关性信号,造成上下文信息缺失,限制了排序模型的表现。
在本文中,我们尝试通过建模上下文感知的细粒度相关性,将其应用在文档排序相关任务上,提升排序任务的表现。我们首先研究了用户在从上至下阅读一篇文档的过程中,其信息收益如何逐段累积,并基于此提出了上下文感知的段落累积收益(PCG,Passage Cumulative Gain)。一篇文档上的PCG序列模拟了用户在每读完一段内容后,其感知到的收益水平逐段变化的过程。因此,PCG避免了独立的段落相关性标注引起的上下文信息缺失。
我们分别在文档层面(DPCG,Document-level PCG)和查询层面(QPCG,Query-level PCG)研究了PCG序列的规律。我们发现PCG序列为非减序列,即收益水平逐段累积不会减少。一个查询会话中靠前位置的文档收益水平会影响后续文档上收益序列的变化规律。基于PCG的序列规律,我们提出了一个基于BERT的序列模型,段落累积收益模型(PCGM,Passage Cumulative Gain Model)。该模型能够有效地预测PCG序列以及应用到多个文档排序任务上,即单文档收益预测与边际相关性预测。在多个数据集上的实验结果表明,PCGM能够在文档排序指标上取得优于现有文档排序模型的效果,并能够在边际相关性估计任务上取得与用户偏好更一致的结果。Abstract: Document ranking is one of the most studied but challenging problems in information retrieval (IR). More and more studies have begun to address this problem from fine-grained document modeling. However, most of them focus on context-independent passage-level relevance signals and ignore the context information. In this paper, we investigate how information gain accumulates with passages and propose the context-aware Passage Cumulative Gain (PCG). The fine-grained PCG avoids the need to split documents into independent passages. We investigate PCG patterns at the document level (DPCG) and the query level (QPCG). Based on the patterns, we propose a BERT-based sequential model called Passage-level Cumulative Gain Model (PCGM) and show that PCGM can effectively predict PCG sequences. Finally, we apply PCGM to the document ranking task using two approaches. The first one is leveraging DPCG sequences to estimate the gain of an individual document. Experimental results on two public ad hoc retrieval datasets show that PCGM outperforms most existing ranking models. The second one considers the cross-document effects and leverages QPCG sequences to estimate the marginal relevance. Experimental results show that predicted results are highly consistent with users' preferences. We believe that this work contributes to improving ranking performance and providing more explainability for document ranking.