We use cookies to improve your experience with our site.

基于混合注意力的同名作者消歧

Towards Effective Author Name Disambiguation by Hybrid Attention

  • 摘要:
    研究背景 同名作者消歧(AND)是学术搜索的核心任务,最近引起了广泛的关注。为了解决AND问题,现有研究基于不同类型信息提出了许多的方法,如原始文档特征、融合特征、局部结构信息和全局结构信息。然而,到目前为止,还没有任何研究方法将上述所有信息充分考虑并且对每个原始文档特征对AND问题的贡献充分利用。因此,我们提出了一个新的框架,即EAND。具体来说,我们设计了一种新颖的特征提取模型,该模型由三个混合注意力机制层组成,其从基于不同相似系数、原始文档特征以及融合特征构建的六个相似图中生成的局部结构信息和全局结构信息中提取用于解决AND的关键信息。每个混合注意力机制都包含三个关键模块(即局部结构感知器、全局结构感知器以及特征提取器)。此外,联合损失函数中的平均绝对误差函数用于引入向量空间的结构信息损失。
    目的 我们的研究目的是通过开发一种基于多特征和混合注意力机制的方法来更有效地处理同名作者消歧问题,为文献知识库进行文献地组织和管理提供一定的参考。
    方法 我们提出了EAND框架,一种考虑多种信息并充分利用每个原始文档特征的贡献度的方法,其通过由三个混合注意力机制层组成的新颖特征提取模型和由多层感知器组成的决策模型来解决AND问题。我们在一个从AMiner数据库中收集的数据集OAG-WhoisWho和一个借助AMiner和DBLP新构建的数据集AD-AND上评估EAND的性能。
    结果 首先,我们对实验数据集进行分析以说明两个现象:(1)原始文档特征缺失(MRDF)和(2)原始文档特征的尺度差异(SRDF)。然后,在两个数据集上,我们展示了EAND大部分情况下在精确度、召回率和F1的分数方面的性能优于最先进的方法。此外,我们评估每个模块的性能并进行参数估计以验证EAND的优势。
    结论 结果表明,框架EAND可以更有效地解决AND问题。在EAND中,生成策略可以在一定程度上解决MRDF问题,更准确地消除同名作者的姓名歧义。在量化成对出版物的相似性时,EAND通过改进的相似性系数考虑现象SRDF。一种新颖的特征提取模型可以捕捉多种特征信息之间的影响,并充分利用每个原始文档特征的贡献。此外,平均绝对误差函数(L1-loss)用于引入向量空间的结构信息损失,使向量空间中的正样本对比负样本对更接近。

     

    Abstract: Author name disambiguation (AND) is a central task in academic search, which has received more attention recently accompanied by the increase of authors and academic publications. To tackle the AND problem, existing studies have proposed various approaches based on different types of information, such as raw document features (e.g., co-authors, titles, and keywords), the fusion feature (e.g., a hybrid publication embedding based on multiple raw document features), the local structural information (e.g., a publication's neighborhood information on a graph), and the global structural information (e.g., interactive information between a node and others on a graph). However, there has been no work taking all the above-mentioned information into account and taking full advantage of the contributions of each raw document feature for the AND problem so far. To fill the gap, we propose a novel framework named EAND (Towards Effective Author Name Disambiguation by Hybrid Attention). Specifically, we design a novel feature extraction model, which consists of three hybrid attention mechanism layers, to extract key information from the global structural information and the local structural information that are generated from six similarity graphs constructed based on different similarity coefficients, raw document features, and the fusion feature. Each hybrid attention mechanism layer contains three key modules: a local structural perception, a global structural perception, and a feature extractor. Additionally, the mean absolute error function in the joint loss function is used to introduce the structural information loss of the vector space. Experimental results on two real-world datasets demonstrate that EAND achieves superior performance, outperforming state-of-the-art methods by at least +2.74% in terms of the micro-F1 score and +3.31% in terms of the macro-F1 score.

     

/

返回文章
返回