SegNet-OPC:基于语义分割网络的超大规模集成电路设计流程中的掩模优化框架
SegNet-OPC: A Mask Optimization Framework in VLSI Design Flow Based on Semantic Segmentation Network
-
摘要:研究背景 现代VLSI设计流程中,掩模优化需要在掩模可打印性和掩模可制造性等多个方面进行综合考虑。随着集成度的不断提高,芯片制造变得越来越复杂,而传统的设计方法往往只考虑电路的性能和功耗等因素,并没有考虑到掩模可打印性或可制造性,导致芯片制造过程中出现了很多质量问题。此外,制造过程中存在着很多工艺和设备方面的限制,如光刻误差、抗蚀剂剂量误差等。如果芯片设计没有考虑到这些限制,很容易导致制造缺陷和不良品率的增加。因此,随着半导体工业不断发展,掩模优化的研究也受到了影响。掩模优化的研究不仅需要考虑到制造方面的限制,同时还需要与电路设计和优化相结合,从而实现芯片性能、可靠性和可制造性的结合。然而,在当前的优化方法中,很多方法并没有考虑全面或仍然有上升空间。目的 我们的研究目的是设计一个能够解决掩模优化任务的算法框架,同时考虑掩模优化中的掩模可打印性和掩模可制造性。该框架可以帮助企业缩短芯片设计的周期。方法 我们介绍了SegNet-OPC,一种基于语义分割网络的掩模优化框架。该框架由两部分组成:(1)语义分割网络SegNet为主干网络,(2)L2校正层和PV Band校正层为微调网络。目标布局经过主干网络生成粗粒度掩模,并经过微调网络生成细化掩模之后完成整个掩模优化流程。结果 在ICCAD2013比赛验证集上验证了所提框架有效性。相较于Neural-ILT,SegNet-OPC的方法平方L2误差低了3%,PV Band低了3%,掩模可制造性则提高了16.7%。在训练时间上,得益于框架的轻量化设计,本文框架的训练时间仅需1.25小时,相比于Neural-ILT的10小时有了显著的缩短。结论 实验结果表明,训练时间显著缩短可以有效的缩短芯片设计的设计周期,大大提高产品的生产效率。掩模可打印性和可制造性的提升也同样提高了芯片制造中芯片设计的效率,为芯片设计中的验证和制造节约时间。提高掩模质量和晶圆图像质量的同时,缩短训练时间,因此我们认为这项研究具有推广价值。Abstract: With the continuous decrease in the critical dimensions of integrated circuits, mask optimization has become the main challenge in VLSI design. In recent years, thriving machine learning has been gradually introduced in the field of optical proximity correction (OPC). Currently, advanced learning-based frameworks have been limited by low mask printability or large computational overhead. To address these limitations, this paper proposes a learning-based framework named SegNet-OPC, which can generate optimized masks from the target layout at shorter training and turnaround time with higher mask printability. The proposed framework consists of a backbone network and loss terms suitable for mask optimization tasks, followed by a fine-tuning network. The framework yields remarkable improvements over conventional methods, delivering significantly faster turnaround time and superior mask printability and manufacturability. With just 1.25 hours of training, the framework achieves comparable mask complexity while surpassing the state-of-the-art methods, achieving a minimum 3% enhancement in mask printability and an impressive 16.7% improvement in mask manufacturability.