We use cookies to improve your experience with our site.

支付通道网络个性化隐私保护路由机制

Personalized Privacy-Preserving Routing Mechanism Design in Payment Channel Network

  • 摘要:
    研究背景 支付通道网络加快了区块链网络的交易确认速度。为进一步提升支付通道交易效率,研究人员提出了针对不同优化目标的路由机制,最小化成本是其中的主流研究方向。然而,当前的路由机制中,忽略了用户的策略行为以及用户的隐私需求,使得提出的路由机制易受到激励攻击以及隐私攻击的威胁。因此,本文针对支付通道交易中存在的用户策略行为和隐私泄漏问题展开研究,旨在设计能抵御用户策略行为并为用户提供个性化差分隐私保护的最小成本交易路由机制。
    目的 对于交易发起者而言,交易路由的成本是其最关心的,所以本文设计的路由机制的优化目标是最小化交易路由的成本。用户参与是支付通道运行的重要基础,而公平性和安全性对用户是否愿意参与路由具有重要影响。如果用户从策略行为中获利,将会影响网络中竞争的公平性。因此,需要设计一个具有真实性的激励机制抵御用户的策略行为。同时,在参与路由的过程中,用户有隐私性需求,并且每个用户的隐私需求是不一致的,那么为用户提供个性化差分隐私保护能够吸引用户参与路由。
    方法 个性化差分隐私路由机制是基于拍卖机制和差分隐私机制的。首先,每个用户根据自己的隐私需求,通过拉普拉斯机制在交易成本上添加噪声,并上报添加噪声后的交易成本。其次,当交易发起者收集到用户上报的添加噪声的交易成本后,基于设计的带约束的K最短路径算法,得到前K条最短路径。第三,在K条最短路径中,分别比较两条路径之间的真实路径成本小的概率,并选择具有最小真实成本的概率最大的路径作为最终路由。最后,利用梅尔森定理和二分搜索,计算路由中每个用户的交易费用。
    结果 通过理论分析证明,本文提出的个性化差分隐私路由机制能够分别以1/2和1/4的概率保证用户的真实性和个体理性。实验数据采用了Ripple的真实网络和交易数据。相比于无隐私保护的路由机制,本文提出的具有个性化差分隐私保护的路由机制,在牺牲了13.2%的路径成本的情况下,为用户提供个性化差分隐私保护。
    结论 本文提出的具有个性化差分隐私保护的路由机制,能够以牺牲较小的成本为代价,为每个用户提供个性化的差分隐私保护。该机制不仅保证了支付通道网络的路由成本,同时提升了支付通道的安全性能,满足了用户的个性化隐私需求。个性化隐私服务框架可以提升支付通道网络中用户的满意度和参与度,使得用户更愿意参与路由,从而使得路由的选择更加灵活,网络整体性能更好。该框架未来可以进一步应用于支付通道网路中的通道容量、交易时间等隐私信息的保护。

     

    Abstract: Payment Channel Network (PCN) provides the off-chain settlement of transactions. It is one of the most promising solutions to solve the scalability issue of the blockchain. Many routing techniques in PCN have been proposed. However, both incentive attack and privacy protection have not been considered in existing studies. In this paper, we present an auction-based system model for PCN routing using the Laplace differential privacy mechanism. We formulate the cost optimization problem to minimize the path cost under the constraints of the Hashed Time-Lock Contract (HTLC) tolerance and the channel capacity. We propose an approximation algorithm to find the top \mathcalK shortest paths constrained by the HTLC tolerance and the channel capacity, i.e., top \mathcalK -restricted shortest paths. Besides, we design the probability comparison function to find the path with the largest probability of having the lowest path cost among the top \mathcalK -restricted shortest paths as the final path. Moreover, we apply the binary search to calculate the transaction fee of each user. Through both theoretical analysis and extensive simulations, we demonstrate that the proposed routing mechanism can guarantee the truthfulness and individual rationality with the probabilities of 1/2 and 1/4, respectively. It can also ensure the differential privacy of the users. The experiments on the real-world datasets demonstrate that the privacy leakage of the proposed mechanism is 73.21% lower than that of the unified privacy protection mechanism with only 13.2% more path cost compared with the algorithm without privacy protection on average.

     

/

返回文章
返回