We use cookies to improve your experience with our site.

基于时空学习的行程旅行时间预测

Spatio-Temporal Learning for Route-Based Travel Time Estimation

  • 摘要:
    研究背景 基于路径的旅行时间预测(TTE)旨在估计交通道路中给定路径的通勤时间,是构建智能交通系统(ITS)的基础任务,受到了工业界和学术界的广泛关注。然而,现有工作大多忽略道路网络的异构性,且无法充分捕获不同道路间的动态时间/空间依赖,从而导致模型的预测精度受限。因此,本文针对异构环境和动态时空依赖下的旅行时间预测问题(HDTTE)展开研究,对交通道路的异构性进行有效建模,并充分挖掘交通道路的动态时空依赖,进而提升预测精度。
    目的 基于路径的旅行时间预测(TTE)具有广泛的研究和应用价值。然而,现有工作大多忽略交通路网的道路异构性和动态时空依赖,导致预测性能受限。基于此,本文提出异构和动态时空感知的旅行时间预测模型HDTTE。此外,本文提出的基于路径的时空建模模块同时支持旅行时间预测任务和交通流预测任务。
    方法 本文提出了异构和动态时空感知的旅行时间预测模型(HDTTE),以同时支持异构和动态交通环境下的旅行时间预测任务和交通流预测任务。首先,利用多关系图构造函数生成交通网络中道路之间的多视图依赖关系图,包括相邻关系图、异构关系图和自适应关系图。其次,为实现动态感知的时空预测学习,设计了一个动态图注意力卷积模块和一个相关性增强时间卷积模块。最后,通过一个多尺度自适应融合模块,以联合利用最近、每天和每周时段的空间和时间依赖,实现周期性的动态时空依赖建模。
    结果 针对本文提出的异构和动态感知的旅行时间预测模型开展实验,实验数据来自真实地理空间数据集,即Beijing、Wuhan和PeMSD4。大量实验结果表明,本文提出的模型在旅行时间预测任务和交通流预测任务上均实现SOTA性能。特别值得说明的是,通过鲁棒性实验证明本文提出的异构性建模模块和动态时空依赖性建模模块的有效性和高效性。
    结论 本文探讨了异构和动态交通下的旅行时间预测问题,研究如何有效地捕获城市交通道路的异构性和动态时空依赖,从而提升模型的预测精度。基于此,提出了异构建模模块、时间建模模块、空间建模模块和周期性时空融合模块。大量的实验结果表明本文提出的方法的有效性、高效性和可迁移性。今后,作者将所提出模型扩展到更广泛的时空预测任务如城市污染分布预测和水资源消耗预测等。

     

    Abstract: Travel time estimation (TTE) is a fundamental task to build intelligent transportation systems. However, most existing TTE solutions design models upon simple homogeneous graphs and ignore the heterogeneity of traffic networks, where, e.g., main roads typically contribute differently from side roads. In terms of spatial dimension, few studies consider the dynamic spatial correlations across road segments, e.g., the traffic speed/volume on road segment A may correlate with the traffic speed/volume on road segment B, where A and B could be adjacent or non-adjacent, and such correlations may vary across time. In terms of temporal dimension, even fewer studies consider the dynamic temporal dependences, where, e.g., the historical states of road A may directly correlate with the recent state of A, and may also indirectly correlate with the recent state of road B. To track all aforementioned issues of existing TTE approaches, we provide HDTTE, a solution that employs heterogeneous and dynamic spatio-temporal predictive learning. Specifically, we first design a general multi-relational graph constructor that extracts hidden heterogeneous information of road segments, where we model road segments as nodes and model correlations as edges in the multi-relational graph. Next, we propose a dynamic graph attention convolution module that aggregates dynamic spatial dependence of neighbor roads to focal roads. We also present a novel correlation-augmented temporal convolution module to capture the influence of states at past time steps on current traffic states. Finally, in view of the periodic dependence of traffic, we develop a multi-scale adaptive fusion layer to enable HDTTE to exploit periodic patterns from recent, daily, and weekly traffic states. An experimental study using real-life highway and urban datasets demonstrates the validity of the approach and its advantage over others.

     

/

返回文章
返回