We use cookies to improve your experience with our site.

基于割点的启发式算法在关键节点问题中的应用

Heuristic Search with Cut Point Based Strategy for Critical Node Problem

  • 摘要:
    研究背景 识别关键节点是复杂网络分析中的一个重要问题,关键节点问题在许多应用领域发挥着重要作用,如网络安全、生物交互网络、智能电网、流行病预防和社交网络分析。关键节点问题的任务是找到节点的一个子集,使得剩余图的预定义连通性度量最小化。由于其计算复杂性,求解关键节点问题是一项具有挑战性的任务,它引起了学术界和工业界的广泛关注。
    目的 本研究旨在提出一种高效的启发式算法来解决关键节点问题。利用图中的结构信息如割点来加速局部搜索的过程,从而使得算法能够求解大规模关键节点问题实例。
    方法 我们提出了一种基于种群算法的启发式搜索算法,他包含了两个主要创新点。第一个是在局部搜索中采用基于切点的贪心策略,第二个创新点改进了用于维护种群的打分函数,使之根据种群的相速度信息动态变化,从而提高种群的总体质量。此外,还应用了一种动态的变异策略,其中变异的概率基于整体平均相似度,以保持解池的多样性。
    结果 我们在经典实例集和大型网络实例集上,与其他竞争算法进行了对比实验,并应用了Wilcoxon秩和检验进一步进行实验分析。实验结果说明了我们算法的优越性,求解能力和求解速度显著领先所有竞争算法。
    结论 本文提出了一种高效的启发式搜索算法,用于解决关键节点问题,它融合了两个主要的新颖思想。第一个是基于切点的局部搜索程序,第二个是动态解池更新策略。实验证明,我们的算法明显优于所有竞争对手。这项工作的思想可以应用于其他问题,特别是可以使用基于种群算法来解决的问题。

     

    Abstract: The critical node problem (CNP) aims to deal with critical node identification in a graph, which has extensive applications in many fields. Solving CNP is a challenging task due to its computational complexity, and it attracts much attention from both academia and industry. In this paper, we propose a population-based heuristic search algorithm called CPHS (Cut Point Based Heuristic Search) to solve CNP, which integrates two main ideas. The first one is a cut point based greedy strategy in the local search, and the second one involves the functions used to update the solution pool of the algorithm. Besides, a mutation strategy is applied to solutions with probability based on the overall average similarity to maintain the diversity of the solution pool. Experiments are performed on a synthetic benchmark, a real-world benchmark, and a large-scale network benchmark to evaluate our algorithm. Compared with state-of-the-art algorithms, our algorithm has better performance in terms of both solution quality and run time on all the three benchmarks.

     

/

返回文章
返回