不可靠观测下的地下恶劣环境无人机定位
UAV Localization with Unreliable Observations in Hostile Underground Environments
-
摘要:研究背景 随着地下资源开发的不断深入和扩展,无人机在地下自动化和智能化发展中发挥着至关重要的作用。在安全监测、设备检查、应急救援等方面,由于地下环境恶劣,通过工业机器人进行智能监控可能导致数据采集失败。无人机作为一种新型地下探测工具,适合进入有污染和危险的恶劣地区作业。无人机体积小、重量轻,在完成某些特定工作方面具有显著优势,可以携带不同类型的设备,并根据业务需求执行不同的任务。此外,无人机在地下火灾监测和消防方面非常重要,也是推广地下应急无线通信网络的有效途径,使工程师能够远程获取地下工作区域的数据。准确可靠的无人机定位是地下智能化开发的基础,不仅降低了工人的劳动强度和风险,还提高了生产效率。目的 恶劣地下环境中的无人机定位主要面临以下挑战:一方面,UWB的距离测量信息不可靠,受多径效应、天线延迟、高温、高湿、高尘等多种因素影响。此外,地下空间封闭、受限以及地质结构不均匀等问题,将进一步加剧多径效应,导致出现完全错误的距离测量信息。另一方面,地下空间中的大型设备和支撑结构等障碍物引起的信号遮挡、反射、散射等,易造成UWB信号的延迟到达、丢包甚至连续丢包。测量更新是基于滤波的定位方法的关键步骤,UWB信号丢失将导致测量更新失败,进而引发定位性能的急剧下降。因此,亟需一个新的定位框架以实现恶劣地下环境中的准确、鲁棒无人机定位。本文从算法层面入手,主要研究以地下车库和地下矿山为代表的恶劣地下环境中的多传感器融合定位问题。方法 通过融合UWB与IMU,本文提出一种新颖的无人机定位框架UO-EKF。首先,利用IMU进行无人机运动补偿,并基于最小化新息误差协方差矩阵引入自适应因子,动态调整系统噪声与测量噪声,进而修正UWB距离测量误差,提高无人机定位准确性。进一步,设计基于系统状态约束的测量更新策略,将无约束的状态估计投影到约束平面上并利用拉格朗日乘数法求解,以补偿UWB距离测量的间歇性丢失。此外,基于自回归模型重构UWB距离测量,解决UWB盲区问题,从而实现恶劣地下环境中精确鲁棒的无人机定位。结果 本文通过仿真和实验对所提出定位框架的性能进行了评估。首先,在Gazebo平台比较UO-EKF中不同方法和策略的定位精度,以及不同参数下UO-EKF的性能,以验证其可行性。进一步,将所提出的UO-EKF在地下车库和煤矿井下进行现场实验并与现有前沿定位算法进行比较,以验证实际效果。结果表明UO-EKF在地下车库和煤矿井下的定位均方根误差分别为19.2cm和21.7cm。与最新相关方法相比,定位性能提高了16.9%。结论 在本文中,我们设计了一种新颖的无人机定位框架UO-EKF,以处理恶劣地下环境中的距离测量信息异常和丢包问题。基于UWB和IMU的融合,在定位框架中提出了AEKF、CEKF和AREKF三种定位算法。AEKF用于检测和校正异常值,提高了定位的准确性。此外,CEKF和AREKF用于补偿距离测量信息的丢失,进一步提高了定位性能。仿真和实验表明,所提出的UO-EKF是可行的,可以在恶劣地下环境中获得更好的鲁棒性和准确性。在今后的工作中,我们将进一步完善定位算法,拓展应用领域。Abstract: The accurate and robust unmanned aerial vehicle (UAV) localization is significant due to the requirements of safety-critical monitoring and emergency wireless communication in hostile underground environments. Existing range-based localization approaches fundamentally rely on the assumption that the environment is relatively ideal, which enables a precise range for localization. However, radio propagation in the underground environments may be dramatically influenced by various equipments, obstacles, and ambient noises. In this case, inaccurate range measurements and intermittent ranging failures inevitably occur, which leads to severe localization performance degradation. To address the challenges, a novel UAV localization scheme is proposed in this paper, which can effectively handle unreliable observations in hostile underground environments. We first propose an adaptive extended Kalman filter (EKF) based on the fusion of ultra-wideband (UWB) and inertial measurement unit (IMU) to detect and adjust the inaccurate range measurements. Aiming to deal with intermittent ranging failures, we further design the constraint condition by limiting the system state. Specifically, the auto-regressive model is proposed to implement the localization in the ranging blind areas by reconstructing the lost measurements. Finally, extensive simulations have been conducted to verify the effectiveness. We carry out field experiments in an underground garage and a coal mine based on P440 UWB sensors. Results show that the localization accuracy is improved by 16.9% compared with the recent methods in the hostile underground environments.