We use cookies to improve your experience with our site.

基于隐式噪声指纹的换脸攻击主动检测模型

FSD-GAN: Generative Adversarial Training for Face Swap Detection via the Latent Noise Fingerprint

  • 摘要:
    研究背景 视频与图像作为社交网络的主要信息传播方式,承载着人们表达自我,记录生活的价值追求。互联网用户除了通过相机真实拍摄视频、图像外,也会通过计算机算法合成虚假视频、图像。尽管这些合成的虚假视频和图像具有一定的娱乐性,但其中关于人脸合成的虚假视频可能会成为虚假信息的传播源,或是侵犯相关用户的隐私权。然而,现有研究大多基于伪造算法的篡改缺陷进行被动检测,缺乏泛用性。当篡改算法做出相应调整改进后,检测算法即会失效。而对于伪造算法的主动防御则是最新被提出的研究方向,当前的研究工作均是针对面部属性编辑模型进行的,对于人脸伪造算法中威胁性更大的换脸算法,目前仍未有行之有效的防御策略与关键技术。
    目的 本研究提出了一种基于隐式噪声指纹的换脸攻击主动检测方法,旨在保证攻击者不知情的情况下,向受保护的图像中加入不可见的隐式噪声指纹,显著提高了换脸攻击检测的准确率,促进了司法取证,从而减少了虚假内容所带来的负面影响。
    方法 本研究提出了一种基于隐式噪声指纹的换脸攻击主动检测训练框架(FSD-GAN),它不受换脸攻击的演变影响。它首先将指纹生成器生成的潜在噪声指纹嵌入到人脸图像中,攻击者在视觉和统计上都无法察觉。一旦攻击者使用这些受保护的人脸进行换脸攻击,这些指纹将从训练数据(受保护的人脸)转移到生成模型(真实世界的人脸交换模型),并且它们也存在于生成的结果(交换后的人脸)中。本研究的鉴别器可以轻松检测嵌入在人脸图像中的潜在噪声指纹,将换脸检测问题转换为验证人脸图像中是否存在隐式噪声指纹。
    结果 本研究通过大量的实验验证了FSD-GAN的有效性和鲁棒性:在我们所提出的数据集上,该模型在准确率和F1值分别取得了93.80%和94.05%的先进性能;面对主流人脸交换模型和不同的JPEG压缩质量,该模型都展现了强大的鲁棒性。同时,所加入的隐式噪声指纹也足够隐蔽,无法被各类攻击算法发现。
    结论 本研究首次提出了一种主动防御策略的换脸检测训练框架FSD-GAN,通过引入了隐式噪声指纹,并利用指纹鉴别器进行换脸检测和取证,以减少虚假内容带来的危害。该技术提供了一种全新的方法来应对不断演变的换脸攻击威胁,为保护网络内容的真实性和可信度提供了新工具和新思路。

     

    Abstract: Current studies against DeepFake attacks are mostly passive methods that detect specific defects of DeepFake algorithms, lacking generalization ability. Meanwhile, existing active defense methods only focus on defending against face attribute manipulations, and there remain enormous challenges to establishing an active and sustainable defense mechanism for face swap detection. Therefore, we propose a novel training framework called FSD-GAN (Face Swap Detection based on Generative Adversarial Network), immune to the evolution of face swap attacks. Specifically, FSD-GAN contains three modules: the data processing module, the attack module that generates fake faces only used in training, and the defense module that consists of a fingerprint generator and a fingerprint discriminator. We embed the latent noise fingerprints generated by the fingerprint generator into face images, unperceivable to attackers visually and statistically. Once an attacker uses these protected faces to perform face swap attacks, these fingerprints will be transferred from training data (protected faces) to generative models (real-world face swap models), and they also exist in generated results (swapped faces). Our discriminator can easily detect latent noise fingerprints embedded in face images, converting the problem of face swap detection to verifying if fingerprints exist in swapped face images or not. Moreover, we alternately train the attack and defense modules under an adversarial framework, making the defense module more robust. We illustrate the effectiveness and robustness of FSD-GAN through extensive experiments, demonstrating that it can confront various face images, mainstream face swap models, and JPEG compression under different qualities.

     

/

返回文章
返回