We use cookies to improve your experience with our site.

OSKR/OKAI:模格密钥封装机制的系统优化

OSKR/OKAI: Systematic Optimization of Key Encapsulation Mechanisms from Module Lattice

  • 摘要:
    研究背景 量子计算机的迅速发展对当前密码算法构成了前所未有的挑战,其所拥有的破解传统密码算法的潜力催生了对后量子密码技术的迫切需求。后量子密码学是一门新兴学科,致力于开发能够抵御量子计算机攻击的加密方法。在这一领域中,基于格的后量子密钥封装技术尤为重要,相关算法中,KYBER由于其出色的安全性能,已经被国际标准化组织正式采纳,我国自主研究的算法Aigis-enc,也获得全国密码算法竞赛一等奖。目前格基密钥封装机制的研究正处于初期阶段,方案设计和工程优化实现均有待进一步优化。
    目的 本文工作主要研究模格密钥封装机制的系统性优化,涵盖算法设计、数论变换、扩展封装密钥大小的方法以及AVX2/ARM实现,以推进后量子密码算法的相关研究,促进网络环境的后量子化进程。
    方法 首先,我们观察到解密过程可以简化,从而使解密过程更快且错误几率更低。其次,基于对数论变换变体的系统研究,我们提出了一种结合了现有方法优点的新变体hybrid-NTT,并推导出其在计算复杂度方面的最优性。接着,我们分析并比较了不同扩大密钥封装大小的方法,并得出了最优方法。上述每种优化技术都具有独立价值,我们将它们全部应用于KYBER和Aigis,分别设计了名为OSKR和OKAI的新方案变体。对于本文提出的所有新方案,我们提供了优化的AVX2和ARM Cortex-M4实现,并展示了性能结果。
    结果 本文的AVX2实现相比于KYBER和Aigis分别提供了高达19.7%和26.4%的速度提升。同时,通过所提出的新参数集和优化技术,本文工作在ARM Cortex-M4平台上相比于KYBER显示出高达17%的改进。
    结论 本文提出的优化技术在格基密钥封装机制的错误率、带宽、灵活性、性能等指标上均可取得优化效果,并可以扩展到基于其他困难问题设计的密码方案上,带来进一步的优化提升。相关算法在网络协议等应用中的集成,以及网络环境的后量子迁移,还有待进一步研究。

     

    Abstract: In this work, we make systematic optimizations of key encapsulation mechanisms based on Module Learning-with-Errors, covering algorithmic design, fundamental operation of the Number Theoretic Transform (NTT), approaches to expanding the encapsulated key size, and AVX2/ARM implementations. We observe that decryption can be simplified, leading to a both faster and less error-prone decryption process. Based on a systematic study of variants of NTT, we present a new variant named hybrid-NTT that combines the advantages of existing NTT methods, and derive its optimality in computational complexity. We analyze and compare the different approaches to expand the size of the key to be encapsulated and conclude with the most economic approach. Each above optimization technique is of independent value, and we apply all of them to KYBER and Aigis, resulting in new scheme variants named OSKR and OKAI, respectively. For all new schemes proposed in this work, we provide optimized AVX2 and ARM Cortex-M4 implementations and present the performance benchmarks. Our AVX2 implementation provides up to 19.7% and 26.4% speedups compared with KYBER and Aigis, respectively. Meanwhile, with our new parameter set and optimization techniques, we show up to a 17% improvement compared with KYBER on the ARM Cortex-M4 platform.

     

/

返回文章
返回