We use cookies to improve your experience with our site.

一种用于分割脉络膜血管的 Transformer 辅助级联学习网络

A Transformer-Assisted Cascade Learning Network for Choroidal Vessel Segmentation

  • 摘要:
    研究背景 脉络膜血管的分割是一个具有挑战性的研究课题,现阶段大多数针对脉络膜的研究是对脉络膜整体进行分割,但是对脉络膜内部结构,尤其是脉络膜血管的自动分割技术研究较少,由于息肉样脉络膜血管病变等病变需要对OCT扫描图进行分析,而手动分割脉络膜血管是一个需要耗费大量人力的任务,所以一个有效的、自动化的脉络膜血管分割技术具有重大的临床意义。
    目的 目前用于辅助眼科疾病诊断的脉络膜血管直接分割方法因数据噪声而效果不佳,而多任务同时分割的方法在分割脉络膜层时牺牲了血管分割的准确度。传统的级联结构在训练时也面临错误传播的问题。针对这些挑战,本文提出了一种新的分割方法,专门针对脉络膜内的血管结构。
    方法 我们开发了一种名为 TACLNet 的 Transformer 辅助级联学习网络,用于脉络膜血管分割。这个网络采用了两阶段的训练策略:首先是脉络膜层分割网络的预训练,然后是脉络膜层分割网络和脉络膜血管分割网络的联合训练。我们还改进网络结构,引入了一种能同时捕捉差异性和细节信息的多尺度差分连接器(MSC)。此外,通过一个辅助Transformer 分支(ATB),能够将全局特征融入分割过程。
    结果 我们的 TACLNet 在血管分割方面的表现超过了其他模型。具体来说,它在准确率上达到了99.27%,在 IoU(交并比)、敏感性和精确度上分别达到了 76.26%、87.55% 和 85.46%。在此基础上,我们提出的 MSC 模块和 ATB 分别在 IoU 方面使血管分割性能提升了 3.19% 和 2.67%。而当同时使用 MSC 模块、ATB 和级联预训练策略时,IoU 的提升幅度达到了 5.18%。我们还发现,提高脉络膜层分割的性能并不一定导致脉络膜血管分割的性能提升。为了展示我们方法的多功能性,我们还进行了视网膜液体分割的实验。与排名第二的模型相比,TACLNet 在所有类别的准确率、IoU 和 DSC(Dice 相似系数),以及在 IRF(视网膜内积液)和 PED(色素上皮脱落)的 DSC 上,分别取得了 0.70%、1.44%、2.34%、4.88% 和 1.67% 的提升。综合来看,我们的方法在眼部疾病诊断和治疗方面具有重要的应用潜力。
    结论 在这项研究中,我们提出了一种名为 TACLNet 的 Transformer 辅助级联学习网络,旨在提高脉络膜血管分割的效果。TACLNet 主要采用一种级联预训练策略,这种策略能够有效地从预先训练的模型中学习重要信息,然后同时对两个关键部分进行训练:脉络膜层分割网络 (LSB) 和脉络膜血管分割网络 (VSN)。我们设计的 MSC 模块能够提供来自相邻特征图的空间差异信息,同时保留重要的局部细节。此外,ATB 能够补偿级联训练过程中可能丢失的全局信息。在脉络膜血管和视网膜液体分割任务的实验中,TACLNet 在准确性和多功能性方面均优于其他已知的脉络膜血管分割方法。我们的分割方法能够帮助眼科医生准确地识别脉络膜血管区域,显著减轻了在诊断脉络膜相关视网膜疾病时进行手动量化分析的工作负担。

     

    Abstract: As a highly vascular eye part, the choroid is crucial in various eye disease diagnoses. However, limited research has focused on the inner structure of the choroid due to the challenges in obtaining sufficient accurate label data, particularly for the choroidal vessels. Meanwhile, the existing direct choroidal vessel segmentation methods for the intelligent diagnosis of vascular assisted ophthalmic diseases are still unsatisfactory due to noise data, while the synergistic segmentation methods compromise vessel segmentation performance for the choroid layer segmentation tasks. Common cascaded structures grapple with error propagation during training. To address these challenges, we propose a cascade learning segmentation method for the inner vessel structures of the choroid in this paper. Specifically, we propose Transformer-Assisted Cascade Learning Network (TACLNet) for choroidal vessel segmentation, which comprises a two-stage training strategy: pre-training for choroid layer segmentation and joint training for choroid layer and choroidal vessel segmentation. We also enhance the skip connection structures by introducing a multi-scale subtraction connection module designated as MSC, capturing differential and detailed information simultaneously. Additionally, we implement an auxiliary Transformer branch named ATB to integrate global features into the segmentation process. Experimental results exhibit that our method achieves the state-of-the-art performance for choroidal vessel segmentation. Besides, we further validate the significant superiority of the proposed method for retinal fluid segmentation in optical coherence tomography (OCT) scans on a publicly available dataset. All these fully prove that our TACLNet contributes to the advancement of choroidal vessel segmentation and is of great significance for ophthalmic research and clinical application.

     

/

返回文章
返回