We use cookies to improve your experience with our site.

在联邦学习中平衡监控视频暴力检测的准确性与训练时间:一种基于神经网络架构的方法

Balancing Accuracy and Training Time in Federated Learning for Violence Detection in Surveillance Videos: A Study of Neural Network Architectures

  • 摘要:
    研究背景 随着监控视频数据的急剧增加,人工智能在暴力检测中的应用变得尤为重要。传统的方法难以处理大规模数据,同时需要遵循数据隐私法规(如GDPR)。联邦学习作为一种新兴的机器学习方法,可以在保护用户隐私的前提下,处理分散的数据。
    目的 本研究旨在开发一种高效的深度学习架构,以实现视频中的暴力检测,重点关注在联邦学习环境中平衡准确性和训练时间。研究希望通过创新的方法提升模型的性能,同时确保数据隐私。
    方法 本研究提出了一种新型的“Diff Gated”网络架构,利用时空特征进行视频分析,采用了迁移学习和超收敛等机器学习技术,以提高训练效率和准确性。本研究还探讨了如何将传统数据集转化为适合联邦学习的格式,并设计了实验来验证模型的有效性。
    结果 实验结果表明,Diff Gated模型在暴力检测任务中取得了优于现有最先进模型的表现。模型的准确率在联邦学习的多轮训练中显著提升,从初始的50.40%增加到99.60%。相较于传统方法,采用帧差法的Diff Gated模型在处理时间和计算效率上也表现出明显优势。
    结论 该研究展示了联邦学习在视频暴力检测中的潜力,证明了通过创新的深度学习架构可以在保护隐私的同时,实现高效的暴力检测。研究结果为未来在实际应用中推广联邦学习提供了理论基础和实践依据。

     

    Abstract: This paper presents an original investigation into the domain of violence detection in videos, introducing an innovative approach tailored to the unique challenges of a federated learning environment. The study encompasses a comprehensive exploration of machine learning techniques, leveraging spatio-temporal features extracted from benchmark video datasets. In a notable departure from conventional methodologies, we introduce a novel architecture, the “Diff Gated” network, designed to streamline preprocessing and training while simultaneously enhancing accuracy. Our exploration of advanced machine learning techniques, such as super-convergence and transfer learning, expands the horizons of federated learning, offering a broader range of practical applications. Moreover, our research introduces a method for seamlessly adapting centralized datasets to the federated learning context, bridging the gap between traditional machine learning and federated learning approaches. The outcome of this study is a remarkable advancement in the field of violence detection, with our federated learning model consistently outperforming state-of-the-art models, underscoring the transformative potential of our contributions. This work represents a significant step forward in the application of machine learning techniques to critical societal challenges.

     

/

返回文章
返回