利用去噪辅助任务增强推荐
Enhancing Recommendation with Denoising Auxiliary Task
-
摘要:研究背景 推荐系统在当今的互联网和电子商务领域发挥着至关重要的作用,它不仅为用户提供了更优质的信息检索和购物体验,还为企业带来了巨大的经济效益。通过分析用户的历史交互序列,系统能够推荐符合用户兴趣和偏好的产品,帮助用户发现潜在的有趣内容。在序列推荐场景中,序列中的噪声问题显著影响了准确和可靠的推荐模型的建立,构成了该领域中的一个复杂且关键的挑战。目的 我们的目的是通过设计一种新颖的自监督辅助任务联合训练模型,从而更准确地重新加权推荐系统中的噪声序列。方法 我们策略性地从用户的原始序列中选择子集,并进行随机替换以生成人工替换的噪声序列。随后,我们对这些人工替换的噪声序列和原始序列进行联合训练。通过有效的重加权,我们将噪声识别模型的训练结果整合到推荐模型中。结果 我们提出的通过联合训练进行去噪的方法在各种基础模型和不同数据规模下表现出了显著的改进。使用六种不同的推荐模型进行的实验表明,辅助任务联合训练的适应性和有效性。结论 我们提出的方法利用噪声识别模型的训练结果来对序列进行重新加权,以训练推荐模型。通过对两个模型进行联合训练,以获取更合适的权重,从而进一步提升推荐模型的性能。在未来的研究中,通过使用对抗性网络,生成器可以创建比人类替换的噪声序列更多的序列,这可能与原始序列中的噪声序列更相似。因此,使用这些生成的序列作为噪声序列可能会产生更好的结果。Abstract: The historical interaction sequences of users play a crucial role in training recommender systems that can accurately predict user preferences. However, due to the arbitrariness of user behaviors, the presence of noise in these sequences poses a challenge to predicting their next actions in recommender systems. To address this issue, our motivation is based on the observation that training noisy sequences and clean sequences (sequences without noise) with equal weights can impact the performance of the model. We propose the novel self-supervised Auxiliary Task Joint Training (ATJT) method aimed at more accurately reweighting noisy sequences in recommender systems. Specifically, we strategically select subsets from users’ original sequences and perform random replacements to generate artificially replaced noisy sequences. Subsequently, we perform joint training on these artificially replaced noisy sequences and the original sequences. Through effective reweighting, we incorporate the training results of the noise recognition model into the recommender model. We evaluate our method on three datasets using a consistent base model. Experimental results demonstrate the effectiveness of introducing the self-supervised auxiliary task to enhance the base model’s performance.