We use cookies to improve your experience with our site.

OAAFormer: 重叠区域感知的鲁棒和高效点云配准

OAAFormer: Robust and Efficient Point Cloud Registration Through Overlapping-Aware Attention in Transformer

  • 摘要:
    研究背景 点云配准是计算机视觉领域中一项关键任务,其旨在将不同视角或传感器采集的点云数据对齐,以实现精确的三维重建、场景理解或目标识别。这项技术在诸如自动驾驶、机器人导航、工业制造和地质勘探等领域具有广泛的应用前景。然而,点云配准面临着多项挑战,其中最显著的是低重叠情况下的配准问题。低重叠意味着不同点云之间存在较少的共享特征点或重叠区域,可能是由于传感器视角受限、遮挡、物体运动或数据噪声等因素引起。针对低重叠条件下的点云配准问题,当前的研究主要集中在提高特征提取和匹配的鲁棒性,引入更多的先验知识或语义信息以辅助配准过程,以及优化配准算法以提高其适应性和效率。这些努力旨在克服低重叠带来的挑战,推动点云配准技术在实际应用中的广泛应用。
    目的 我们的研究目标是针对低重叠情况下的点云配准问题,提出一种既鲁棒又高效的配准方法。借鉴“由粗到细”的匹配范式,我们将重叠区域检测与特征匹配巧妙结合,致力于建立更准确的对应关系。
    方法 我们引入了一种软匹配机制,以促进潜在有价值的通信从粗到细的传播。此外,我们还集成了一个重叠区域检测模块,以最大限度地减少不匹配。此外,我们在精细匹配阶段引入了线性复杂度的区域关注模块,旨在增强提取特征的判别能力。最后,为了加速预测过程,我们用选择有限但具有代表性的高置信度对应集来取代传统的RANSAC算法,从而在保持相当注册性能的同时加速了100倍。
    结果 我们在室内(3DMatch)、室外(KITTI)以及合成(ModelNet)数据集上训练并测试了本文提出的OAAFormer。实验结果表明,在具有挑战性的3DLoMatch基准测试中,我们的方法表现出了显著的改进。测试结果显示,我们的方法导致了约7%的内嵌比的大幅增加,并提高了2-4%的配准召回率。此外,我们的方法在另外两个基准测试中也实现了更小的误差,充分体现了本文方法的优异性。
    结论 在本文中,我们通过一系列策略增强了粗到细的匹配机制。关键的增强包括:(1)开发了一个软匹配模块,用于保留超级点之间的有价值的对应关系;(2)引入了一个重叠区域检测模块,用于消除不匹配;(3)结合了一个区域注意力模块,具有线性复杂度,以增强提取特征的区分能力。此外,我们提出了一种通过精心选择数量有限但具有高置信度的代表性对应关系来加速预测过程的技术。我们通过在三个公开数据集上进行的实验验证了我们方法的有效性和鲁棒性。

     

    Abstract: In the domain of point cloud registration, the coarse-to-fine feature matching paradigm has received significant attention due to its impressive performance. This paradigm involves a two-step process: first, the extraction of multi-level features, and subsequently, the propagation of correspondences from coarse to fine levels. However, this approach faces two notable limitations. Firstly, the use of the Dual Softmax operation may promote one-to-one correspondences between superpoints, inadvertently excluding valuable correspondences. Secondly, it is crucial to closely examine the overlapping areas between point clouds, as only correspondences within these regions decisively determine the actual transformation. Considering these issues, we propose OAAFormer to enhance correspondence quality. On the one hand, we introduce a soft matching mechanism to facilitate the propagation of potentially valuable correspondences from coarse to fine levels. On the other hand, we integrate an overlapping region detection module to minimize mismatches to the greatest extent possible. Furthermore, we introduce a region-wise attention module with linear complexity during the fine-level matching phase, designed to enhance the discriminative capabilities of the extracted features. Tests on the challenging 3DLoMatch benchmark demonstrate that our approach leads to a substantial increase of about 7% in the inlier ratio, as well as an enhancement of 2%–4% in registration recall. Finally, to accelerate the prediction process, we replace the Conventional Random Sample Consensus (RANSAC) algorithm with the selection of a limited yet representative set of high-confidence correspondences, resulting in a 100 times speedup while still maintaining comparable registration performance.

     

/

返回文章
返回