基于对抗生成模型的跨模态语义一致性细胞核检测
Unsupervised Adversarial Domain Adaptation with Hierarchical Semantic Consistency for Cross-Modal Nuclei Detection
-
摘要:研究背景 深度学习方法在快速量化病理图像中的细胞核方面表现出显著优势。然而,当前基于全监督的方法需要大量标注信息以达到良好的预测性能,而病理图像中细胞核的人工标注成本昂贵,且由于病理图像不同染色之间的差异,现有细胞核检测方法难以在跨不同病理染色模态的图像中实现准确预测。目的 本文旨在解决跨病理染色方式进行细胞核检测时面临的标注缺失问题,利用带标注的源域染色图像进行训练,最终实现对无标注目标域染色图像的无监督细胞核位置预测。方法 本文提出一种端到端的无监督领域适应模型(MSC-GAN),利用跨染色模态的语义一致性信息(即图像的染色风格改变后,图像中的细胞核位置信息仍保持一致),通过将源域图像的染色转换为目标域的染色风格,并利用源域原有的标注数据来训练目标域染色风格的细胞核检测网络,从而在未标注的目标域数据上实现细胞核检测。此外,引入了分层语义一致性损失,包括特征级和细胞核位置掩码级两个层面,以提供额外的监督信号,增强生成对抗学习在染色模态转换时的效果。同时,为避免对抗生成网络中判别器的过拟合问题,设计了一个多尺度增强模块,以实现对图像风格转换过程中内容信息的保留。结果 本文在4组数据集中评估了提出方法的有效性,以F1分数作为主要的细胞核检测任务的评价指标,MSC-GAN分别在H&E结肠图像(源域)至IHC胰腺图像(目标域)中达到80.5%,H&E结肠图像(源域)至荧光染色图像(目标域)中达到62.4%,H&E乳腺图像(源域)至IHC胰腺图像(目标域)中达到77.6%,H&E乳腺图像(源域)至荧光染色图像(目标域)中达到62.3%。比较实验结果显示,所提出的模型在细胞核检测任务中相比其他方法实现了最佳的F1分数。结论 文章提出了一种跨病理染色模态的端到端无监督对抗领域适应模型MSC-GAN,用于细胞核检测。该模型使用多层次语义一致性损失函数与判别器增强模块,在实现提高图像风格转换性能的同时,保证图像中语义信息的一致性。对比实验表明,使用H&E染色图像作为源域,IHC和荧光染色图像作为目标域,所提出的MSC-GAN获得最优的F1分数。MSC-GAN模型在本文中主要用于病理图像中的细胞核检测任务,还可扩展至CT、MRI等其他模态。领域适应方法在跨模态特征提取方面有显著优势,但如何挖掘不同模态的医学数据中一致的语义信息仍是挑战。Abstract: Deep learning based methods have demonstrated outstanding capabilities in quantifying nuclei and cells in microscopy images. However, differences among various stain modalities would affect the performance of nuclei detection. How to fully utilize limited annotations for nuclei detection in other pathological staining images without annotations has become a significant challenge. This paper proposes an end-to-end unsupervised multi-level semantic consistent generative adversarial network (MSC-GAN) for nuclei detection across different pathological staining modalities. Specifically, we address nuclei detection on the unlabeled target domain data by first transforming the stain modality of the source domain into the target domain, and then utilizing the source domain annotations to train the nuclei detector network. A hierarchical semantic consistency loss including feature-level consistency and mask-level consistency is introduced to offer supplementary supervision to enhance the accuracy of generative adversarial learning. We further design an augmentation module to prevent the discriminator from overfitting. The experimental results on four microscopy image datasets demonstrate that MSC-GAN outperforms state-of-the-art methods in the nuclei detection tasks, achieving superior F1 scores.