We use cookies to improve your experience with our site.

AB-DHD:基于注意力机制和BiGRU的动态链接库劫持漏洞挖掘模型

AB-DHD: An Attention Mechanism and Bi-Directional Gated Recurrent Unit Based Model for Dynamic Link Library Hijacking Vulnerability Discovery

  • 摘要:
    研究背景 随着操作系统的快速发展,系统漏洞的数量和复杂性不断增加,系统安全面临严峻挑战。动态链接库(Dyamic Link Library,DLL)劫持作为一种常见的攻击手段,在免费软件平台的安装程序中尤为普遍,且极易被恶意软件攻击者利用。DLL劫持通过替换合法DLL文件来实现对系统的控制,从而严重威胁用户和系统的安全。然而,现有的研究主要聚焦于DLL加载路径的检测,忽视了安装程序属性和调用模式等关键因素。这种局限性导致漏洞检测的准确性不足,无法满足新型攻击的多样化和复杂性,通用性也较弱。因此,如何提升DLL劫持漏洞检测的准确性和通用性,成为亟需解决的问题。
    目的 本文旨在提出一种新的模型,以弥补现有方法在DLL劫持漏洞检测中的不足。我们希望提升漏洞检测的准确性和通用性,特别是在新的安装程序中检测未知的DLL劫持漏洞。此外,我们还希望揭示DLL文件与安装程序属性之间的潜在关联,并为未来的研究提供可靠的参考数据。
    方法 本文通过结合多维特征分析和先进的深度学习方法,提出了一种基于注意力机制和双向门控循环单元(BiGRU)的模型AB-DHD,用于DLL劫持漏洞的检测。我们采用双层BiGRU网络来分析具有DLL劫持漏洞的安装程序内部特征,从而实现对多维特征之间关系的捕捉;同时,结合注意力机制动态调整特征权重,进一步提升模型的检测精度。为了验证模型的有效性,我们构建了两个数据集:EXEFul数据集包含具有代表性的安装程序,DLLVul数据集则包含被劫持的DLL文件,数据来源于权威数据库CVE和CNVD以及主流安装程序分发平台。
    结果 实验结果表明,本文提出的模型AB-DHD在准确性和召回率方面显著优于现有的自动化工具,如Rattler和DLLHSC。具体而言,模型的准确率达到97.79%,召回率为94.72%。此外,模型在13种不同类型的安装程序上表现出高效的漏洞检测能力,进一步验证了其通用性和适应性。通过AB-DHD,我们还成功发现了17个此前未被公开的漏洞,并已获得中国国家漏洞数据库(CNVD)的认证。
    结论 本文提出的基于双层BiGRU和注意力机制的模型AB-DHD,在DLL劫持漏洞检测中展现了卓越的性能,不仅提高了检测的准确率和召回率,还增强了对新型安装程序中漏洞的发现能力。此外,本文揭示了DLL劫持漏洞与安装程序属性之间的潜在关联,并开发了一份“易被劫持DLL列表”,为未来的相关研究提供了重要的参考依据。通过此次研究,我们为提升操作系统安全性,特别是在大型安装程序中的漏洞检测,提供了一种高效、全面的解决方案。

     

    Abstract: With the rapid development of operating systems, attacks on system vulnerabilities are increasing. Dynamic link library (DLL) hijacking is prevalent in installers on freeware platforms and is highly susceptible to exploitation by malware attackers. However, existing studies are based solely on the load paths of DLLs, ignoring the attributes of installers and invocation modes, resulting in low accuracy and weak generality of vulnerability detection. In this paper, we propose a novel model, AB-DHD, which is based on an attention mechanism and a bi-directional gated recurrent unit (BiGRU) neural network for DLL hijacking vulnerability discovery. While BiGRU is an enhancement of GRU and has been widely applied in sequence data processing, a double-layer BiGRU network is introduced to analyze the internal features of installers with DLL hijacking vulnerabilities. Additionally, an attention mechanism is incorporated to dynamically adjust feature weights, significantly enhancing the ability of our model to detect vulnerabilities in new installers. A comprehensive “List of Easily Hijacked DLLs” is developed to serve a reference for future studies. We construct an EXEFul dataset and a DLLVul dataset, using data from two publicly available authoritative vulnerability databases, Common Vulnerabilities & Exposures (CVE) and China National Vulnerability Database (CNVD), and mainstream installer distribution platforms. Experimental results show that our model outperforms popular automated tools like Rattler and DLLHSC, achieving an accuracy of 97.79% and a recall of 94.72%. Moreover, 17 previously unknown vulnerabilities have been identified, and corresponding vulnerability certifications have been assigned.

     

/

返回文章
返回