时延敏感网络中基于扩散模型的混合流调度方法研究
DiffTSN: Scheduling Mixed Flows in Time-Sensitive Networks with Diffusion-Based Method
-
摘要:研究背景 时间敏感网络(TSN)因其确定的端到端延迟、抖动和高可靠性,成为工业网络中一项前景广阔的技术。数据流是TSN流量调度的基本单位,可根据流量触发行为分为时间触发和随机流量两类。这两类数据流都需要在保证服务质量的前提下进行传输,而传统的逐个流调度存在每次调度都会积累偏差的缺点。因此,如何同时处理混合流量并保证整体性能,面临诸多挑战。目的 本研究的目的是设计一种新的混合流量调度方案,在能够解决传统方法逐个流调度产生累积偏差的前提下,实现混合流的性能最大化。方法 本研究提出方法DiffTSN,使用扩散模型来解决混合流的联合路由和调度问题。本文将随机流转化为概率流,并设计相应机制来适配这些概率流的性质。我们将路由选择问题转化为一个扩散模型和约束去噪过程,并通过另一个指导模型来对扩散模型进行约束,以实现更好的路由选择策略。对于时间调度的子问题,我们采用贪心算法来确定流量的起始传输时间。结果 本文使用本研究开源的时延敏感网络仿真器进行训练和评估,采用调度比例和奖励值作为指标。实验表明DiffTSN在各种指标上都优于其他的算法。此外,本研究还对DiffTSN进行了各个模块的消融实验,以验证每个模块对调度结果的影响。结论 本文研究时间敏感网络(TSN)混合流调度问题,提出了用于TSN协议下混合流联合路由和时间调度的DiffTSN方法。该方法使用基于扩散模型的算法确定路由结果,并使用时隙分配贪心算法确定时间调度结果。实验表明,相对于所比较的已有工作,DiffTSN在不同的网络拓扑结构下都能实现较高的调度比例和奖励值。Abstract: Deterministic transmission plays a vital role in industrial networks. The time-sensitive network (TSN) protocol family offers a promising paradigm for transmitting time-critical data. To achieve low latency and high Quality of Service (QoS) in TSN, appropriate data flow scheduling is needed under the given network topology and data flow requirements to fully utilize the potential of TSN. Both time-triggered flows and sporadic flows can carry high-priority data and need to be considered jointly to eliminate the effects of each other. To this end, in this work, we investigate the challenging mixed-flow scheduling problem and propose a novel diffusion-based algorithm, DiffTSN, to solve the joint routing and scheduling problem of mixed flows. We transform the sporadic flows into probabilistic flows and design certain mechanisms to fit the nature of these probabilistic flows. For routing, we transform the problem into a diffusion policy and constraint denoising process with a value guide to achieve a better routing policy. For scheduling, we adopt a first-valid-time-slot algorithm to determine the start transmission time of the flows. We train and evaluate DiffTSN in our TSN simulator. Experiments show that DiffTSN outperforms state-of-the-art algorithms in various metrics.