We use cookies to improve your experience with our site.

中央特征网络实现低信噪比条件下小分子和大分子的高精度检测

Central Feature Network Enables Accurate Detection of Both Small and Large Particles in Cryo-Electron Tomography

  • 摘要:
    研究背景 冷冻电子断层扫描(Cryo-ET)作为一种先进的三维成像技术,受限于低信噪比和复杂的背景噪声,现有方法在小分子检测和分类上仍然存在明显不足。
    目的 本研究旨在提出一种全新的3D对象检测框架“中央特征网络(CFN)”,以克服在小粒子检测上的局限性,提高检测的准确性,并提升分类性能。
    方法 CFN采用深度卷积神经网络结构,结合以下技术创新:1.多尺度特征集成:通过整合浅层局部特征与深层全局信息,提高对不同尺寸粒子的识别能力。2.适应性加权采样训练策略:优化复杂背景噪声的区分能力。梯度下降追踪策略:在测试过程中逐步定位粒子中心,增强检测精度。此外,采用基于SHREC 2021数据集的实验验证了该框架的有效性。
    结果 CFN在SHREC数据集上的实验结果表明,与最先进的DeepFinder方法相比,CFN在以下指标上表现出显著优势:1.定位F1分数提高1.2%,达到0.880;分类F1分数提高1.9%,达到0.785。2.对四种最小分子的分类F1分数分别提高了3.6%、7.3%、6.6%和5.1%。平均欧几里得距离从2.22 nm降低至1.62 nm,显著提升了粒子中心定位的准确性。CFN还在小分子和复杂背景噪声下表现出强大的鲁棒性,但在区分相似粒子和处理缺失楔形区域上仍存在改进空间。
    结论 本研究证明,中央特征网络(CFN)在冷冻电子断层扫描中的粒子定位与分类任务上具有显著的优势。CFN的提出为低信噪比环境下的分子生物学研究提供了新的工具和思路。

     

    Abstract: Advances in cryo-electron tomography (cryo-ET) have enabled the visualization of molecules within their native cellular environments in three-dimensions (3D). These visualizations are essential for studying the functions of biological entities in their natural conditions. Recently, deep learning techniques have shown significant success in tackling the challenge of particle detection in cryo-ET data. However, accurately identifying and classifying multi-class molecules remain challenging due to factors like low signal-to-noise ratios and the wide range of particle sizes. In this study, we introduce a novel framework CFNPicker for 3D object detection applied to cryo-ET analysis. A major advantage of our method is the design of central feature network (CFN) to integrate central features across multiple scales, allowing for the accurate detection of both small (\leqslant 200) and large (\geqslant 600) molecules. Additionally, we propose an adaptive weighted sampling training strategy to distinguish the complex noise distribution in the background, reducing false positive particles. We also construct the localization label to explicitly utilize the size and position variations of multi-class protein structures. Compared with existing methods, CFN improves the F1 score for classification by 3.6%, 7.3%, 6.6%, and 5.1% for the four smallest molecules tested respectively, while preserving similar or higher F1 scores for other molecules analyzed.

     

/

返回文章
返回