We use cookies to improve your experience with our site.

基于功能性植物生长竞争模型的自然场景的模拟和可视化研究

Simulation and Visualisation of Functional Landscapes: Effects of the Water Resource Competition Between Plants

  • 摘要: 复杂自然场景的模拟和可视化是计算机图形学中一个极富挑战性的研究课题,在虚拟现实和林业管理等领域有着广泛的应用。已有的研究方法在大规模静态自然场景的快速实时绘制上取得了较大的进展,但它们往往没有考虑到绝大部分自然场景是一个在复杂环境因素(例如降雨,温度,日照等)下不断变化的生态系统,如何有效的模拟和可视化这样的动态系统是一个值得关注的问题, 目前尚未得到深入的研究。本文结合水力学和植物学相关知识,对以大量植物为主体的自然地形场景,提出了一种基于GreenLab 功能性植物生长竞争模型的动态模拟和可视化方法。GreenLab 模型是一个能有效预测在环境因素(水分,温度等)作用下单株植物生长以及多株植物竞争的功能结构性模型(Functional-Structural Plant Model) 。为了有效利用此模型,本方法将自然场景模拟所需要的数据分为四层-天气层、土壤层、地表存水层和植物层。天气层存贮温度和降雨量等环境数据、土壤层存贮地形高度和土壤渗水量等数据、地表存水层存贮地表水的分布,而植物层存贮植物位置、分布、生物量和生长周期等数据。在每个模拟周期中,首先根据已有的一些物理或经验模型更新与环境相关的层数据:天气层和土壤层采用了环境数据和经验模型,而对地标存水层,则采用了一个有效的水文物理模型。然后再利用这些环境数据和GreenLab 模型去更新植物层相关信息,计算相应的生长过程。由于植物生长过程与环境存在着交互,植物层对环境数据的反馈也需要用于更新环境相关数据。在模拟周期结束后,使用OPENGL 图形库对整个自然场景进行渲染。实验结果证明由于采用了基于了植物学原理的GreenLab 结构功能模型,本方法能够真实的模拟以植物为主的自然地形场景在降雨等环境因素下水流流动和植被生长分布等动态现象;由于良好的数据结构设计以及对每个层次上模型的合理选择,本方法能够在较大的自然地形场景上获得实时的可视化结果。最后,本方法具备良好的扩展性,为在此生态系统中加入更多更复杂的环境因素提供了可能。相比传统的自然场景可视化方法,本文中提出的方法具有两个显著特点:(1) 为在复杂环境因素影响下的自然场景的模拟和可视化提供了一个有效的简单框架 (2) 在自然场景的模拟中引入了植物生长竞争功能结构模型, 增强了自然场景模拟的真实性和实用价值。

     

    Abstract: Vegetation ecosystem simulation and visualisation are challenging topicsinvolving multidisciplinary aspects. In this paper, we present a newgeneric frame for the simulation of natural phenomena through manageableand interacting models. It focuses on the functional growth of largevegetal ecosystems, showing coherence for scales ranging from theindividual plant to communities and with a particular attention to theeffects of water resource competition between plants.The proposed approach is based on a model of plant growth in interactionwith the environmental conditions. These are deduced from the climaticdata (light, temperature, rainfall) and a model of soil hydrologicalbudget. A set of layers is used to store the water resources and tobuild the interfaces between the environmental data and landscapecomponents: temperature, rain, light, altitude, lakes, plant positions,biomass, cycles, etc. At the plant level, the simulation is performedfor each individual by a structural-functional growth model, interactingwith the plant's environment. Temperature is spatialised, changingaccording to altitude, and thus locally controls plant growth speed. Thecompetition for water is based on a soil hydrological model taking intoaccount rainfalls, water runoff, absorption, diffusion, percolation insoil. So far, the incoming light radiation is not studied in detail andis supposed constant. However, competition for light between plants isdirectly taken into account in the plant growth model.In our implementation, we propose a simple architecture for such asimulator and a simulation scheme to synchronise the water resourceupdating (on a temporal basis) and the plant growth cycles (determinedby the sum of daily temperatures). The visualisation techniques arebased on sets of layers, allowing both morphological and functionallandscape views and providing interesting tools for ecosystem management.The implementation of the proposed frame leads to encouraging resultsthat are presented and illustrate simple academic cases.

     

/

返回文章
返回