We use cookies to improve your experience with our site.

在线评分系统的虚假行为研究:评分挑战赛|攻击模型和攻击发生器

Dishonest Behaviors in Online Rating Systems: Cyber Competition, Attack Models, and Attack Generator

  • 摘要: 随着互联网的快速发展,用户的在线反馈成为网络信息的重要来源,在线评分系统(Online Rating System)在电子商务和网络信息平台中应用越来越广泛。但是各种恶意欺骗和虚假反馈严重阻碍了在线评分系统的发展。如何识别和抵御虚假点评成为一个富有挑战性的研究课题。
    当前的虚假评分检测方法都局限于非常简单的攻击模型,缺少真实的攻击数据和模型成为检测系统向前发展的主要障碍。为了解决这个重要问题,我们成功设计和组织了国际评分挑战赛(Rating Challenge),从而收集了大量的真实攻击数据。为了配合攻击数据的收集和使用,我们设计开发了一项基于信号统计的虚假评分检测系统。该系统由多个评分检测器和用户信誉算法共同组成,具有很强的虚假检测能力。
    通过对真实攻击数据的详细分析,我们发现了许多重要的攻击特征,从而建立了真实的攻击模型,并设计开发了虚假评分生成器。我们的攻击模型和虚假评分生成器可以直接用来测试现有的在线评分系统,并且可以有效辅助新系统的开发。我们的研究成果极大地推动了虚假行为检测和在线评分系统的发展。

     

    Abstract: Recently, online rating systems are gaining popularity. Dealing with unfair ratings in such systems has been recognized as an important but challenging problem. Many unfair rating detection approaches have been developed and evaluated against simple attack models. However, the lack of unfair rating data from real human users and realistic attack behavior models has become an obstacle toward developing reliable rating systems. To solve this problem, we design and launch a rating challenge to collect unfair rating data from real human users. In order to broaden the scope of the data collection, we also develop a comprehensive signal-based unfair rating detection system. Based on the analysis of real attack data, we discover important features in unfair ratings, build attack models, and develop an unfair rating generator. The models and generator developed in this paper can be directly used to test current rating aggregation systems, as well as to assist the design of future rating systems.

     

/

返回文章
返回