We use cookies to improve your experience with our site.

基于对象相似度的下一个位置预测研究

Mining Object Similarity for Predicting Next Locations

  • 摘要: 下一个位置预测在很多基于位置的应用中起到重要作用。凭借坚实的理论基础,基于马尔科夫模型的方法在这个问题上取得了巨大的成功。在本文中,我们寻求通过理解对象间的相似度来提高预测效果。我们提出了一种新的加权马尔科夫模型,它在挖掘移动模式时同时考虑了位置序列和对象间的相似度。具体来说,我们首先为每个对象利用其历史轨迹训练一个马尔科夫模型,然后从两方面(空间位置相似度和轨迹相似度)来计算不同对象之间的相似度。最后,我们将相似度作为到达每一个候选下一个位置的概率的权重,并返回排名靠前的位置作为预测结果。我们在一个真实的数据集上进行了大量实验,实验结果显示我们提出的方法在预测准确度上比现有方法有很大提高。

     

    Abstract: Next location prediction is of great importance for many location-based applications. With the virtue of solid theoretical foundations, Markov-based approaches have gained success along this direction. In this paper, we seek to enhance the prediction performance by understanding the similarity between objects. In particular, we propose a novel method, called weighted Markov model (weighted-MM), which exploits both the sequence of just-passed locations and the object similarity in mining the mobility patterns. To this end, we first train a Markov model for each object with its own trajectory records, and then quantify the similarities between different objects from two aspects:spatial locality similarity and trajectory similarity. Finally, we incorporate the object similarity into the Markov model by considering the similarity as the weight of the probability of reaching each possible next location, and return the top-rankings as results. We have conducted extensive experiments on a real dataset, and the results demonstrate significant improvements in prediction accuracy over existing solutions.

     

/

返回文章
返回