We use cookies to improve your experience with our site.

个性化差分隐私保护中基于博弈论的数据可用性提高方法

Improving Data Utility Through Game Theory in Personalized Differential Privacy

  • 摘要: 随着社交网络中信息发布数量的急剧增长,隐私问题已受到公众越来越多的关注。尽管差分隐私的出现为隐私保护提供了很好的理论基础,隐私保护和数据可用性之间的平衡仍需进一步提升。然而,大多数现有工作没有量化考虑攻击者行为对数据可用性造成的影响。本文首先提出了基于距离的个性化差分隐私保护方法。其次,我们分析了用户和攻击者在不知道对方策略情况下可获得的最大数据可用性。根据静态贝叶斯博弈,我们在差分隐私场景下定义了收益函数,并使用改进的增强学习算法求得纳什均衡解。所提方法可以快速的达到收敛,同时可以最大化用户的数据可用性。通过真实数据集上的实验证明了所提方法的有效性和灵活性。目的:设计一种个性化差分隐私保护方法,并分析刻画攻击者行为对数据可用性的影响,基于博弈论建立模型,实现数据可用性的最大化。创新点:1 提出了一种基于社交距离的个性化差分隐私保护方法。所提方法需要较少的隐私预算,同时可以获得更高的数据可用性;2 在差分隐私场景下,通过静态贝叶斯博弈描述用户和攻击者之间的对抗行为,在量化双方行为模式的基础上,通过获取贝叶斯纳什均衡进一步提升了保护数据的可用性;3 使用改进的Q-learning算法快速获取贝叶斯纳什均衡。所提方法通过减少数据的基数简化了迭代过程,从而使求解过程快速收敛;4 在真实数据集上从多个角度对所提模型进行评估,实验结果验证了所提方法的有效性。方法:首先设计了一种基于距离的个性化差分隐私保护方法。其次,我们从博弈的角度分析刻画了用户和攻击者在隐私保护场景下的对抗行为。进一步根据静态贝叶斯博弈定义出所研究场景下的收益函数,最后使用改进的增强学习算法求得最优解。结论:所提方法实现了个性化差分隐私保护的要求。与传统方法相比,所提方法可以获得更高的数据可用性。同时在算法效率上也得到了进一步提升。

     

    Abstract: Due to dramatically increasing information published in social networks, privacy issues have given rise to public concerns. Although the presence of differential privacy provides privacy protection with theoretical foundations, the trade-off between privacy and data utility still demands further improvement. However, most existing studies do not consider the quantitative impact of the adversary when measuring data utility. In this paper, we firstly propose a personalized differential privacy method based on social distance. Then, we analyze the maximum data utility when users and adversaries are blind to the strategy sets of each other. We formalize all the payoff functions in the differential privacy sense, which is followed by the establishment of a static Bayesian game. The trade-off is calculated by deriving the Bayesian Nash equilibrium with a modified reinforcement learning algorithm. The proposed method achieves fast convergence by reducing the cardinality from n to 2. In addition, the in-place trade-off can maximize the user's data utility if the action sets of the user and the adversary are public while the strategy sets are unrevealed. Our extensive experiments on the real-world dataset prove the proposed model is effective and feasible.

     

/

返回文章
返回