We use cookies to improve your experience with our site.

基于全局协方差池化卷积神经网络的通用图像隐写分析

Universal Image Steganalysis Based on Convolutional Neural Network with Global Covariance Pooling

  • 摘要: 1. 研究背景:图像隐写是一项可有效保护人们通信安全的技术,但易被用于不法行为。隐写分析是一项用于检测数字图像中是否含有由隐写嵌入的秘密信息的技术,可有效监控隐写术的使用。近年来,基于深度学习的隐写分析方法已经取得了比传统的基于人工设计特征的隐写分析方法更好的检测效果。
    2. 目的:现有的基于深度学习的隐写分析方法大部分是基于特定域进行的,即仅针对空域或者是仅针对JPEG域的隐写分析。除此之外,已有的基于深度学习的隐写分析算法大多需要很长的训练时间来得到具有良好检测性能的隐写分析模型。为了能在隐写分析检测性能和所需训练耗时间中取得平衡,本文提出了一个可同时适用于空域和JPEG域隐写分析的高效隐写分析网络。
    3. 方法:我们对隐写分析网络中会对检测性能造成影响的部分进行了精心地设计,如在预处理模块中为提高输入图像的信噪比,引入了SRM和Gabor高通滤波器;在特征提取模块中的卷积层组,引入了有助于梯度传播和特征重用的跳跃连接;在输出特征进入分类模块前,采用了全局协方差池化来进一步聚合高层次特征,使所提取特征的表达能力更强。我们在常用的BOSSBase 和BOWS2数据集上进行相应的实验验证。
    4. 结果:大量的实验结果证明,所提隐写分析网络在空域上的检测性能已超越目前一些先进的隐写分析方法,如YeNet、ZhuNet和SRNet,在频域上的检测性能也与相应的隐写分析方法如J-YeNet、SRNet相当,但所需的训练耗时却大大减少了,约为YeNet、J-YeNet、ZhuNet的1/2,SRNet的1/4。
    5. 结论:我们提出了一个简单且高效的隐写分析网络,该网络在空域上的隐写分析检测性能已超越目前先进的隐写分析网络,在频域上的检测性能也与目前国际领先水平相当,且所需要的训练耗时大大减少了。在进一步的工作中,我们将会考虑如何将通道选择信息融入所提网络,以及如何减少所提网络中启发式的设计。

     

    Abstract: Recently, steganalytic methods based on deep learning have achieved much better performance than traditional methods based on handcrafted features. However, most existing methods based on deep learning are specially designed for one image domain (i.e., spatial or JPEG), and they often take long time to train. To make a balance between the detection performance and the training time, in this paper, we propose an effective and relatively fast steganalytic network called US-CovNet (Universal Steganalytic Covariance Network) for both the spatial and JPEG domains. To this end, we carefully design several important components of US-CovNet that will significantly affect the detection performance, including the high-pass filter set, the shortcut connection and the pooling layer. Extensive experimental results show that compared with the current best steganalytic networks (i.e., SRNet and J-YeNet), US-CovNet can achieve the state-of-the-art results for detecting spatial steganography and have competitive performance for detecting JPEG steganography. For example, the detection accuracy of US-CovNet is at least 0.56% higher than that of SRNet in the spatial domain. In the JPEG domain, US-CovNet performs slightly worse than J-YeNet in some cases with the degradation of less than 0.78%. However, the training time of US-CovNet is significantly reduced, which is less than 1/4 and 1/2 of SRNet and J-YeNet respectively.

     

/

返回文章
返回