We use cookies to improve your experience with our site.

基于点云-体素的几何自适应点云分析网络

Point-Voxel Based Geometry-Adaptive Network for 3D Point Cloud Analysis

  • 摘要:
    研究背景 点云分析由于点云数据无序和不规则的特性而具有挑战性。为了描述点云中的几何信息,现有的方法主要使用卷积、图和注意力运算来构造复杂的局部聚合算子。这些算子可以很好地提取局部信息,但由于计算复杂度高,带来了较大的推理延迟。
    目的 为了解决上述问题,本文提出了一种新颖的基于点云-体素的几何自适应网络(PVGANet),该网络结合了点云和体素的多重表示方式来从不同粒度描述点云,可以有效地获得不同尺度的特征。
    方法 为了提取细粒度的几何特征,我们设计了位置自适应池化算子,该算子利用点对的相对位置和特征相似性对点云局部区域的点特征进行加权和聚合。为了提取粗粒度的局部特征,我们设计了深度卷积算子,该算子在体素网格上进行深度卷积。通过简单的相加,这两种特征可以很好地融合在一起,我们可以使用这种几何自适应融合特征来完成点云的高效形状分析,如形状分类和部件分割。
    结果 在ModelNet40、ScanObjectNN和ShapeNet Part数据集上的大量实验结果表明,与相关方法相比,我们的PVGANet实现了具有竞争力的性能。
    结论 本文提出了一种基于点云-体素的几何自适应网络,称为PVGANet,以完成高效的点云分析。在该网络中,我们使用点云和体素的多重表示来从不同的粒度描述点云。PVGANet由基于点的位置自适应池化算子和基于体素的深度卷积算子构成,可以同时提取细粒度的几何特征和粗粒度的局部特征。不同粒度的特征使PVGANet能够在点云中获得各种尺度的信息。此外,深度卷积的使用和PAPool算子的简单设计确保了PVGANet网络的效率。大量的实验结果表明,与相关工作相比,PVGANet在不同的基准测试上取得了具有竞争力的性能。未来,我们将研究点特征和体素特征的特征融合方法,以实现更合理的特征融合,进一步提高网络性能。

     

    Abstract: Point cloud analysis is challenging because of the unordered and irregular data structure of point clouds. To describe geometric information in point clouds, existing methods mainly use convolution, graph, and attention operations to construct sophisticated local aggregation operators. These operators work well in extracting local information but bring unfavorable inference latency due to high computation complexity. To solve the above problem, this paper presents a novel point-voxel based geometry-adaptive network (PVGANet), which combines multiple representations of point and voxel to describe the point cloud from different granularities and can obtain features of different scales effectively. To extract fine-grained geometric features, we design the position-adaptive pooling operator, which uses point pairs’ relative position and feature similarity to weight and aggregate the point features at local areas of point clouds. To extract coarse-grained local features, we design a depth-wise convolution operator, which conducts the depth-wise convolution on voxel grids. With an easy addition, fine-grained geometric and coarse-grained local features can be fused, and we can use the geometry-adaptive fused features to complete the efficient shape analysis of point clouds, such as shape classification and part segmentation. Extensive experiments on ModelNet40, ScanObjectNN, and ShapeNet Part benchmarks demonstrate that our PVGANet achieves competitive performance compared with the related methods.

     

/

返回文章
返回