We use cookies to improve your experience with our site.

基于意图感知的图嵌入学习的推荐

Intent-Aware Graph-Level Embedding Learning Based Recommendation

  • 摘要:
    研究背景 根据用户过去的购买、浏览等行为向用户提供个性化的推荐列表,在商业平台中变得越来越重要。近年来的推荐方法可以分为基于协同过滤的推荐和基于图的推荐。然而,用户的兴趣是复杂多样的,用户的偏好也可能会随着时间的推移而变化。现在的推荐方法不能很好地捕捉用户的动态偏好变化,也不能发现用户真实潜在的意图。
    目的 为了解决上述问题,本文从用户对于商品的行为序列中,构建用户意图,探索用户的通用意图和特定意图。并基于此,为用户生成准确的推荐列表。
    方法 本文提出了基于意图感知的图嵌入学习的推荐。该框架主要包括捕获意图、面向学习意图的图嵌入和基于意图的推荐。为了挖掘用户的潜在意图和偏好变化,基于用户生成的项目之间的频繁同现关系(例如,点击、购买)构建了同现图。然后,从共现图中生成用户的基本通用意图和特定意图。为了深入探索用户的真实动机和潜在偏好,自适应聚合旨在生成不同的用户通用意图和用户特定意图。然后,设计对比抽样来捕获特定意图的正样本和负样本,具体来说,从一般意图中随机选择正样本,并基于一般意图的图腐蚀构建负样本。然后,根据具有正通用意图样本和负通用意图样本的特定意图之间的相互信息损失,设计图级嵌入学习,得到用户通用意图和特定意图的表示。最后,为了进一步挖掘用户的偏好变化,基于探索和开发策略设计了一种基于意图的推荐,通过在推荐过程中动态更新意图的权重来捕捉用户兴趣的动态趋势。
    结果 在三个公共数据集上进行了实验,结果表明所提出的方法得到的推荐列表,比先进的协同过滤方法和基于图的推荐方法具有更高的准确性。此外,实验还讨论了推荐的稳定性和多样性,结果表明本文提出的方法能够实现推荐稳定性和多样性之间的平衡。
    结论 本文提出了一个新颖的推荐方法。该方法能够探索用户的普遍意图和特定意图,能够适应用户偏好的动态变化。关于推荐的稳定性和多样性的探索,为推荐系统中的冷启动问题提供了一种解决思路。

     

    Abstract: Recommendation has been widely used in business scenarios to provide users with personalized and accurate item lists by efficiently analyzing complex user-item interactions. However, existing recommendation methods have significant shortcomings in capturing the dynamic preference changes of users and discovering their true potential intents. To address these problems, a novel framework named Intent-Aware Graph-Level Embedding Learning (IaGEL) is proposed for recommendation. In this framework, the potential user interest is explored by capturing the co-occurrence of items in different periods, and then user interest is further improved based on an adaptive aggregation algorithm, forming generic intents and specific intents. In addition, for better representing the intents, graph-level embedding learning is designed based on the mutual information comparison among positive intents and negative intents. Finally, an intent-based recommendation strategy is designed to further mine the dynamic changes in user preferences. Experiments on three public and industrial datasets demonstrate the effectiveness of the proposed IaGEL in the task of recommendation.

     

/

返回文章
返回