We use cookies to improve your experience with our site.

用户资源需求异构的边缘服务定价机制

Edge-Centric Pricing Mechanisms with Selfish Heterogeneous Users

  • 摘要:
    研究背景 边缘计算服务商和云计算服务商均通过出租计算资源以获得收益,用户可以根据自己的延迟需求在边缘服务和云服务中进行选择,因此,边缘服务商和云服务商之间存在竞争关系。此外,在实际场景中,边缘侧资源有限,不同用户的资源需求不同,且用户的资源需求和对延迟的需求信息并不完全真实。针对上述挑战,设计用以最大化边缘服务商收益的边缘服务定价机制,具有重要意义。
    目的 为边缘服务设计诚实的定价机制,最大化其收益,并基于理论和实验对机制的有效性进行分析。
    方法 本文根据对用户信息的真实程度,分三步展开研究。首先,当边缘服务商已知所有用户的私有信息(资源需求、对边缘的偏好)时,本文提出了伪多项式时间复杂度最优定价机制(OM);当用户资源需求已知,偏好值可能虚报时,本文提出了诚实的贪心机制(GM)和随机采样机制(RSM);当无用户私有信息时,本文提出了诚实的修改随机采样机制(RSM+)。
    结果 理论分析表明,对于GM,当有n个用户时,边缘服务商至多保证1/n的最优收益,当每个用户对社会福利的贡献不超过1/β时,可以保证(1/3−1/β)最大社会福利。对于RSM,边缘服务商以接近1的概率获得最优收益的常数近似。本文基于Google cluster数据集,将具有完全信息的最优机制作为基准,通过大规模模拟实验验证了理论分析结果和提出的GM,RSM+的有效性。
    结论 边缘定价受到用户资源需求、云-边偏好等私有信息,以及边缘资源容量等已知信息影响,合理的竞争定价机制对充分利用有限的边缘资源获取最大收益至关重要,随机采样定价机制在大部分场景下表现最优,贪心机制在用户量较小时表现更优。未来可针对歧视性的定价展开工作。

     

    Abstract: Through deploying computing resources close to users, edge computing is regarded as a promising complement to cloud computing to provide low-latency computational services. Meanwhile, edge platforms also play the role of competitors of the cloud platforms in a non-cooperative game, which sets prices for computational resources to attract users with different real-time requirements. In this paper, we propose the edge pricing game under competition (EPGC) and investigate the truthful pricing mechanisms of the edge platform with the objective of maximizing its revenue under three different settings. When all user information is available, the optimal mechanism (OM) can be achieved based on a knapsack problem oracle. With partial information, where users’ resource demand is given but their preference information to the edge platform is private, we propose a random sampling mechanism (RSM) that achieves a constant approximation with probability approaching one. We also propose an efficient heuristic greedy mechanism, and we call it GM. Both mechanisms are truthful, GM is directly applicable, while RSM requires minor modifications (RSM+) for deployment in the prior-free setting where all user information is private. Finally, extensive simulations are conducted on the Google cluster dataset. The results validate our theoretical analysis that RSM+ works well in the market where edge resources are scarce, while GM performs better when the edge platform has a larger capacity constraint.

     

/

返回文章
返回