FDNet:基于光流-形变平行交叉编码的临近降水预测深度学习方法
FDNet: A Deep Learning Approach with Two Parallel Cross Encoding Pathways for Precipitation Nowcasting
-
摘要:研究背景 短时临近降水预报任务是根据雷达回波图等气象观测数据,提供未来较短时间范围内(例如0-6小时)的准确及时的局部降雨强度预测。当前基于神经网络的临近降水预报方法将临近降水预报任务归纳为一个时空预测学习问题,该方法以给定的连续帧雷达回波图像作为输入条件,来学习生成图像的概率分布。目的 由于背后复杂的而固有的大气物体机理,雷达观测数据往往蕴含着难以刻画的非平稳趋势,而对于时空非平稳趋势的建模能力不足,导致了现有方法的预测结果图片越来越模糊。本文将雷达回波图随时间的演变分解为光流场的运动和形态上的变化两部分,并提出了一种新的基于神经网络的预测架构,称为光流-形变网络(Flow Deformation Network,FDNet),该神经网络架构分别考虑了光流场运动和变形,旨在将非平稳过程分解,捕获雷达回波的细粒度演变。方法 FDNet由五个模块组成:位置编码器,形状编码器,光流编码器,形变编码器以及组合解码器。位置编码器和形状编码器分别从单个帧中提取有意义的雷达回波位置特征和形状特征。光流编码器将相邻两帧之间的空间对应关系作为输入,并将其输入到ConvLSTM中以生成对时空序列的光流信息的隐藏特征。形变编码器的输入来自两部分,其一是当前时刻的形状特征,其二是前一时间步的形状特征在光流场作用后的隐藏特征。形变编码器将两部分输入之间的差分信号作为输入,并将其传入ConvLSTM中,以建模这种形变的动态性,并输出最终的形变隐藏特征。最终,组合解码器将来自形变编码器和形状编码器的输出作为输入,并将它们组合解码以生成下一帧的像素级预测。可以通过在K时间步长上递归执行上述过程来实现多个帧的预测。在两个真实的雷达回波数据集上对所提出的模型采用CSI,HSS,BMSE和BMAE等指标进行了评估,评测结果表明它优于以有的基线方法,特别是对于强降雨情况下,更长的未来时间步的预测。结果 结果表明,FDNet模型在30dBZ、40dBZ和50dBZ等降水阈值下,相比其他基线模型CSI和HSS指标都有一致性的预测结果提升(各项指标提升10%~20%)。结论 光流编码器主要关注的是雷达回波的整体运动,并能保持对雷达回波主体的轮廓和范围的记忆。它有助于模型预测结果中的雷达回波范围不至于过度扩张。形变编码器对像素的变化非常敏感,甚至是在迭代过程中丢失的信息,因此它有助于FDNet保持对强降雨信息的长期记忆,另外形变建模分支还使模型具备了预测新生降雨的能力。得益于位移和形变这两个独立的建模分支,FDNet的结果不仅更清晰,而且在未来的预测中更具确定性。FDNet对于强降雨和较长时间步(例如未来2小时)的预测具有明显优势。Abstract: With the goal of predicting the future rainfall intensity in a local region over a relatively short period time, precipitation nowcasting has been a long-time scientific challenge with great social and economic impact. The radar echo extrapolation approaches for precipitation nowcasting take radar echo images as input, aiming to generate future radar echo images by learning from the historical images. To effectively handle complex and high non-stationary evolution of radar echoes, we propose to decompose the movement into optical flow field motion and morphologic deformation. Following this idea, we introduce Flow-Deformation Network (FDNet), a neural network that models flow and deformation in two parallel cross pathways. The flow encoder captures the optical flow field motion between consecutive images and the deformation encoder distinguishes the change of shape from the translational motion of radar echoes. We evaluate the proposed network architecture on two real-world radar echo datasets. Our model achieves state-of-the-art prediction results compared with recent approaches. To the best of our knowledge, this is the first network architecture with flow and deformation separation to model the evolution of radar echoes for precipitation nowcasting. We believe that the general idea of this work could not only inspire much more effective approaches but also be applied to other similar spatio-temporal prediction tasks.